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outline of the talk:

» Introduction and motivation.

» Algebraic applications: spectrum of the Laplacian on the
Basilica Julia set (with Rogers, Brzoska, George, Jarvis
arXiv:1908.10505).

> selected technical details (if time permits)
This is a part of the broader program to develop probabilistic, spectral

and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



abstract of the talk

This talk explores how spectral theory, graph geometry, and dynamical
systems are applied to study the random walk generator on finitely
ramified self-similar graphs and fractals. Such structures often exhibit
pure point or singular continuous spectra, as seen in examples like the
Sierpinski triangle, the Vicsek tree, and the Schreier graphs of the Hanoi
group studied by Bartholdi, Grigorchuk, Lyubich, Nagnibeda, Sunic, Zuk
et al. A more intricate instance involves the Basilica Julia set of the
polynomial z? — 1 and its lterated Monodromy Group, introduced by
Nekrashevych. The spectrum of the Basilica Julia set was analyzed
numerically by Strichartz et al. and analytically in collaboration with
Luke Rogers and students at UConn, as well as independently by Dang,
Grigorchuk, and Lyubich in the paper " Self-similar groups and
holomorphic dynamics: renormalization, integrability, and spectrum.” We
will discuss the background and new results on the spectral analysis of
self-similar graphs and their fractal limits, highlighting spectral
dimensions, self-similar random walks, diffusion limits, and the role of
symmetries and finite ramification in explicit spectral computations.
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Self-similar groups and holomorphic dynamics:
Renormalization, integrability, and spectrum

Nguyen-Bac Dang, Rostislav Grigorchuk, Mikhail Lyubich

In this paper, we explore the spectral measures of the Laplacian on Schreier graphs for several self-
similar groups (the Grigorchuk, Lamplighter, and Hanoi groups) from the dynamical and algebro-
geometric viewpoints. For these graphs, classical Schur renormalization transformations act on
appropriate spectral parameters as rational maps in two variables. We show that the spectra in question



J. Fractal Geom. 4 (2017), 369-424 Journal of Fractal Geometry
DOI 10.4171/JFG/55 © European Mathematical Society

Ends of Schreier graphs
and cut-points of limit spaces
of self-similar groups

Ievgen Bondarenko,! Daniele D’Angeli,? and Tatiana Nagnibeda3



Proceedings of Symposia in

PURE MATHEMATICS

ysis on Graphs
and Its Applications

n Institute for Mathematical Sciences,

‘oshikazu Su
Alexander Teplyaev
Editors

Amertcas Matbematical Soclety




DOI: 10.1090/pspum/077/2459868 + Corpus ID: 279025

Groups and analysis on
fractals

V. Nekrashevych, A. Teplyaev * Published 2005 = Mathematics

We describe relation between analysis on fractals and the theory of

self-similar groups. In particular, we focus on the construction of the
Laplacian on limit sets of such groups in several concrete examples,
and in the general p.c.f. case. We pose a number of open questions.
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What are Hausdorff and spectral dimensions of a self-similar set?



For the circle, d» =1
For Riemannian d-manifolds, ds = dy = d

In general, ds can be defined using the asymptotics of eigenvalues or,
equivalently, asymptotics of the heat kernel.

If ds is well defined, then

recurrence of the diffusion <= ds <2

in which case we sometimes can prove Kigami's formula

du,r

ds — 2R _
° dur+1

where dy g is the effective resistance Hausdorff dimension.



On the Sierpinski gasket (S.Goldstein 1984)

log 9 log 3
dmo:1<¢:T£g<dH:k§2

On the basilica Julia set we formally computed (Rogers-T, 2010)

dS:g

On the Sierpinski carpet 3!ds (Barlow, Bass, Kumagai, T. 1989-2010)

log2
log 3

~ log8

ds < d
R
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Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920'), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, Ito ...

distance ~ V/ time

“Einstein space—time relation for Brownian motion'

Wiener process in R" satisfies LE|W;|?> = t and has a
Gaussian transition density:

1 x —y[?
Pt(Xv)/)*WeXP T4



» De Giorgi-Nash-Moser estimates for elliptic and parabolic
PDEs;

» Li-Yau (1986) type estimates on a geodesically complete
Riemannian manifold with Ricci > 0:

1 d(x.y)?
e~ e ()

distance ~ / time



Gaussian:

1 x =yl
Pt(XJ) = Wexp (_4t

Li-Yau Gaussian-type:

1 d(x,y)?
pe(x,y) ~ VoD exp (—ct )

Sub-Gaussian:

1 d(x, dy\ %1
Pt(X’)/) ~ mexp <—C ((ty)> )

distance ~ (time)ﬁ



Brownian motion on R9: E|X; — Xo| = ct'/2.

Anomalous diffusion: E|X; — Xo| = o(t'/?), or (in regular enough
situations),
E|X; — Xo| ~ t1/d

with d,, > 2.

Here d,, is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in
the transport properties of disordered media, such as (critical) percolation
clusters.



taw—1

dw
1 d(x,y)™ 1
pt(X7y) ~ th/dw exp <_C 1

distance ~ (time) A

dy = Hausdorff dimension
% = d,, = “walk dimension” (y=diffusion index)
% = ds = “spectral dimension” (diffusion dimension)
First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow,
Bass, Perkins (mid 1980'—)

1
Pt(X7X) ~ m

Note: t — oo for random walks but t — 0 for diffusions.
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A part of an infinite Sierpinski gasket.



Figure: An illustration to the computation of the spectrum on the infinite
Sierpiriski gasket. The curved lines show the graph of the function %(-).

Theorem (Rammal, Toulouse 1983, Béllissard 1988,
Fukushima, Shima 1991, T. 1998, Quint 2009)

On the infinite Sierpiriski gasket the spectrum of the Laplacian consists of
a dense set of eigenvalues 9R~1(X;) of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on R~1(JR).



Half-line example

.» «’4> «‘4> «'4> «'4> «‘4> «‘4> «‘4> «’4> «‘4>
1 gp pq gqp gqp P9 PG Gp PG qp
Transition probabilities in the pg random walk. Here p € (0,1) and
g=1—-np.
f(0) — (1), ifx=0

(Apf)(x) =14 f(x)—qf(x —1) —pf(x+1), if37™Xx =1 (mod 3)
f(x) — pf(x —1) — gf(x + 1), f37™X¥x=2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p#£ % the Laplacian A, on (?(Zy) has purely singularly continuous
spectrum. The spectrum is the Julia set, a topological Cantor set of
Lebesgue measure zero, of the polynomial
R(z) = z(z> =3z + (2 + pq))

Pq
This is a simple, possibly the simplest, quasi-periodic example related to
the recent results of A.Avila, D.Damanik, A.Gorodetski, S.Jitomirskaya,
Y .Last, B.Simon et al.




Spectral zeta function

Theorem. (Derfel-Grabner-Vogl, Steinhurst-T., Chen-T.-Tsougkas,
Kajino (2007-2017)) For a large class of finitely ramified symmetric
fractals the spectral zeta function

(s) = N2

has a meromorphic continuation from the half-pain Re(s) > ds to C.
Moreover, all the poles and residues are computable from the geometric
data of the fractal. Here ); are the eigenvalues if the unique symmetric
Laplacian.

» Example: {(s) is the Riemann zeta function up to a trivial factor in
the case when our fractal is [0, 1].

» In more complicated situations, such as the Sierpiriski gasket, there
are infinitely many non-real poles, which can be called complex
spectral dimensions, and are related to oscillations in the spectrum.
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Poles (white circles) of the spectral zeta function of the Sierpiiski gasket.



Spectral Analysis of the Basilica Graphs (with Luke
Rogers, Toni Brzoska, Courtney George, Samantha Jarvis)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open
questions in this area, and a complete picture of which orders of growth
are possible, and which are not, is missing.

The Basilica group is a group generated by a finite automation acting on
the binary tree in a self-similar fashion, introduced by R. Grigorchuk
and A. Zuk in 2002, does not belong to the closure of the set of groups
of subexponential growth under the operations of group extension and
direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be
amenable, making the Basilica group the 1st example of an amenable
but not subexponentially amenable group (also “Miinchhausen
trick” and amenability of self-similar groups by V.A. Kaimanovich).



The basilica Julia set, the Julia set of z2 — 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virag,
Nekrashevych, Kaimanovich, Nagnibeda et al.).



In 2005, V. Nekrashevych described the Basilica as the iterated
monodromy group, and there exists a natural way to associate it to the
Basilica fractal (Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al.
classified up to isomorphism all possible limits of finite Schreier graphs of
the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T.
constructed Dirichlet forms and the corresponding Laplacians on the
Basilica fractal in two different ways: by imposing a self-similar harmonic
structure and a graph-directed self-simliar structure on the fractal.

In 2012-2015, Dong, Flock, Molitor, Ott, Spicer, Totari and
Strichartz provided numerical techniques to approximate eigenvalues and
eigenfunctions on families of Laplacians on the Julia sets of z? + c.



Theorem (Rogers-T., 2010)

The simple random walks in the basilica Schreier graphs are
re-normalizable and converge, with a change of time, to a diffusion
process on the basilica Julia set. These random walks and the diffusion
process have spectral dimension

d5:§

This spectral dimension appears in the weak Weyl’s law for the
Laplacian on the basilica Julia set.

Note: this is an informal re-statement of the main result.



Theorem (Rogers-T. et al., 2017)

The graph Laplacian on a generic infinite basilica Schreier graph has
pure point spectrum and a complete set of eigenfunctions with finite
support.



General Geometric Pure Point Spectrum Theorem (1995
— ... work in progress: T. Nagnibeda, L. Rogers et al.)

Goo = | Ga

n>0

is a strictly increasing union of finite graphs and each point x € G, on
the boundary of G, has a symmetry

8x,n: Gp = Gy
which fixes x, gx.n(x) = x.
Let G, be the sub-group of symmetries of G, generated by gy »
Theorem (informal). If sup,-, |G| < oo and each G, acts

“sufficiently transitively” on the orbit of G, then the spectrum on G, is
pure point with a complete set of localized eigenfunctions.

gx,n+1(Gn) N Gn =0
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pictures taken from paper by Nagnibeda et. al.



Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs G,

b a
—>
a b b
- @
a b b b b

G()s

3 b b e aa e
t ) bb
Gy e—2 2 o
1)8]0




Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13

Cumulative Distribution of Eigenvalues, Level 13

Cumulative Distribution
T
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs G,. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, limsup o(L(") has a gap that contains the
n—o0

interval (2.5,2.8).

Theorem (arXiv:1908.10505)

In the Hausdorff metric, limsup o(L(") has infinitely many gaps.
n—o0




Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of G,

Definition
Let {kn}nen be a strictly increasing subsequence of the natural numbers.
For each n, embed Gy, in some isomorphic subgraph of Gy, ,. The
corresponding infinite blow-up is G 1= Up>0 Gk, .

Assumption
The infinite blow-up G, satisfies:

@ For n > 1, the long path of Gi _, is embedded in a loop v, of G, .

n—1

@ Apart from I, , and r,,_,, no vertex of the long path can be the
3,6,9 or 12 o'clock vertex of 7.

@ The only vertices of Gy, that connect to vertices outside the graph
are the boundary vertices of Gk, .




Spectral Analysis of the Basilica Graphs

0



Spectral Analysis of the Basilica Graphs

Theorem

(kn) _ (Un)
(1) o(L*, )= o(L§?).

Yn
(2) The spectrum of L(>) is pure point. The set of eigenvalues of L(>) is

U otg”) = | Mo},

n>0 n>0

where the polynomials ¢, are the characteristic polynomials of Lg"), as
defined in the previous proposition.

(3) Moreover, the set of eigenfunctions of L(>) with finite support is
complete in (2.




TECHNICAL DETAILS



Fix p, g>0, p+q=1, and define probabilistic Laplacians A,, on the segments
[0, 3"] of Z inductively as a generator of the random walks:

0 1
*—0
1 1
0 1 3
r—o—o— 0

q :o)n 2‘(371) 3n+1
1 qp P 4q 1

and let A = lim A,, be the corresponding probabilistic Laplacian on Z.
n—oo



If 2z #—1 % p and R(z)=2z(22+32+2+pq)/pq, then
R(z) € 0(A)) <= z € 0(Apnt1)

Theorem (Joe P. Chen and T., JMP 2016). o(A) = Jg, the Julia set
of R(z).

If p=gq, then o(A)=[—2, 0], spectrum is a.c.

If p # q, then o(A) is a Cantor set of Lebesgue measure zero, spectrum is

singularly continuous.
3
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There are uncountably many “random” self-similar Laplacians A on Z:
For a sequence X = {k;}32,, k; € {0, 1,2}, let
n .
X, =-> k;3
j=1
and A,, is a probabilistic Laplacian on [X,,, X,,+3"]:

X, X431 X,+2(3"1) X,+3"

1 qp P q 1

In the previous example k; = 0 for all 3.

Theorem.

For any sequence I we have 0(A) = Jgr. The same is true for the Dirichlet
Laplacian on Z (when k; = 0).



R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups.
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Sierpinski 3-graph Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)



These three polynomials are conjugate:

Sierpiniski 3-graph (Hanoi Towers-3 group): f(x) = x?> —x — 3
f3)=3f(3)=5

Sierpiiski 4-graph, “adjacency matrix” Laplacian: P(X) = 5X — A2
P(0) =0, P'(0) = 5

Sierpiniski 4-graph, probabilistic Laplacian: R(z) = 422 + 52
R(0) = 0, R'(0) = 5



Theorem. Eigenvalues and eigenfunctions on the
Sierpinski 3-graphs and Sierpiniski 4-graphs are in
one-to-one correspondence, with the exception of the
eigenvalue z = —% for the 4-graphs.

V S



Sierpinski 3-graph ! Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 22% + 4z R(z) = %zz + %z



Let H and Jqy be Hilbert spaces, and U : Hy — H be an isometry.

Definition. We call an operator H spectrally similar to an operator Hy with
functions g and ¢y if

U*(H — 2)7'U = (po(2)Ho — ¢1(2)) ™"
In particular, if po(2) # 0 and R(2) = ¢1(2)/@o(2z), then

(=R

U*(H — 2)"'U =
( ) 20(2)

IfH=<S X)then

X Q
S — ZIO — X(Q - ZIl)_IX = QD()(Z)HO — (PI(Z)IO

Theorem (Malozemov and T.). If A is the graph Laplacian on a self-similar
symmetric infinite graph, then

Jr Co(Ax) CIrU D

where D, is a discrete set and J g is the Julia set of the rational function R.

11
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Let A be the probabilistic LapIaC|an (generator of a simple random walk) on the
Sierpiriski lattice. If z # -2 5 4, 2, and R(z) = z(4z + 5), then

R(z) € 0(A) <= z € o(A)

O'(A) :HRU®

B ot SIS
o
W
N
[=}

where @ = {—7}U < U R™{- 4})
and Jg is the Julia set of R(z)

Niw Ao




There are uncountably many nonisomorphic
Sierpinski lattices.
Theorem (T). The spectrum of A is pure point.
Eigenfunctions with finite support are complete.

0 AexeA AexeA AexeA A






Let A(0) pe the Laplacian with zero (Dirichlet) boundary condition at L. Then

the compactly supported eigenfunctions of A are not complete (eigenvalues in
€ is not the whole spectrum).

Let L) be the set of two points adjacent to AL and wg)) be the spectral

measure of A(0) associated with ]IaL(O)' Then supp(w(Ao)) = Jr has Lebesgue
measure zero and

d(w(AO) (e} R1,2)
dw(AO)

_ (82 +5)(22 + 3)

(=) = 2z 1 1)@= + )




Three contractions Fi, Fy, F3 : R' — R', Fj(xz) = i(x+p;), with fixed

points p; = 0, %, 1. The interval I=[0, 1] is a unique compact set such that

1= J B
7=1,2,3
The boundary of I is 81 = Vy = {0,1} and the discrete approrima-

tions toLare V, = |J F;(Vp—1) = {3%}2:0
j=1,2,3

Vo=0I : °

Vs

20



Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on I is E(f) = li_)m 3"EL(S) =
Jo 1§ (@) de

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3&,11(f) > &€,.(f) and 3E,,11(h) = E,(h) = 37"E(h)
for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) =3) _ E&(foF))

ji=1,2,3

21



Definition. The discrete Laplacians on V,, are

Anf@) =3 Fo)—Ff@), zeVL\V

YyeEWVn
y~z

and the Laplacian on I is A f(z) = 1i_{n 9"A,f(z) = f'(z)

Gauss—Green (integration by parts) formula:

1 1
&) =~ | rardetsr],

Spectral asymptotics: Let p(A) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian A:

p(N) = #{3 : A < A}

p(A) 1

A—oo Nds/2 T
where ds = 1 is the spectral dimension.

Then

22



A )—8/2

Definition. The spectral zeta function is (a(s) = Z)\ 760(_ J
)

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree IN such that its Julia set Jgp C (—o0, 0],
R(0) =0and ¢c = R/(0) > 1.

Definition. The zeta function of R(z) for Re(s) > dp = 218N g

logc
C;](s) — 7}1_)1112 ‘(_an)fs/2 — ZAJ_S/Z
z€R™"{zo}
fi(s)

Theorem. (*(s) = - Nes/2 + £5°(8), where f1(s) and £5°(s) are ana-

lytic for Re(s)>0. If Jg is totally disconnected, then this meromorphic continuation
extends to Re(s)>—e, where £>0.

In the case of polynomials this theorem has been improved by Grabner et al.

23
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log N+4inm
logc

dp € the poles of C;O - {2
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Theorem. (a(s) = (7 (s) where R(z) = z(42°+122+9).
The Riemann zeta function {(s) satisfies {(s) = ﬂsC%(s) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If z# — %, —%, then
R(z) € 0(A,) < z € 0(Ant1)

and so Ca(s) = C;’%(s) since the eigenvalues A;j of A are limits of the eigenvalues
of 9" A,,.
Also A\j=—m%52 and so

o N8/2
ca(s) =Y (7%?) = 75¢(s)
j=1
where ¢(s) is the Riemann zeta function. Q.E.D.

— 513 _qn -S/2
¢(s) = =lim ) (-9"z)
zeRT {0}
z2#0
25



Definition. A, is pu—Laplacian if
1 1
ef) = [ 1F@Pde=— [ A fdu+ 11,
0 0

Definition. A probability measure p is self-similar with weights my, ms, ms

ifu= >, m;ucF;.
§j=1,2,3

Proposition. uf(m)_—_ lim (1+1)nAnf(m).

An iﬂ _ pf( )+qf(k+1) _f(gn)
/) { aF (50 + pF(EE) — (&)

ma _ ml
mitmz’ 9 mytmy’ and

where mi=mg, p=

ma mo ms

1 qp Pq 1

® hd L o hd hd hd A L o
P

1
at
3
st
Q4
a t
3
t
S
st
Q|
st
QY
at
s
st
Q|
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then

0< hm 1nf p(N) < lim sup PN < oo
Ads/2 A—00 Ads/2
where the spectral dimension is
1
:L% < 1.
10g(1+ﬁ)

All the inequalities are strict if and only if p # gq.

Proposition. R(z) € 0(A,) < z € o(An+t1)
where z#—14p and R(z)=z(2%24+32+2+pq)/pq.
Note that R'(0)=1 + ., and d;=dp.

Theorem. CA“(S):C?{(S)



Three contractions Fy, F,, F3 : R? — R?
Fj(x) = 3(z+p;), with fixed points p1, pz, ps.

D2

D1 D3
The Sierpinski gasket is a unique compact set S such that
§= U Fj(9)

j=1,2,3

28



Definition. The boundary of S is

98 = Vo = {p1,p2, p3}
and discrete approrimations to S are

Vo= U Fj(Vn—l)

Jj=12,3

Vo Vi: Vs




Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on S'is
£(f) = lim (2)"€.(F)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition.  2&,.1(f) > En(f)
§8n+1(h):8n(h):(g) “"&(h) for a harmonic h.

Theorem (Kigami). € is a local regular Dirichlet form on S which is self-similar

in the sense that
Ef) =35 D E(foF))

ji=1,2,3
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Definition. The discrete Laplacians on V,, are

Anf@) =3 f)—Ff@), zeEVL\V

YEVR
y~

and the Laplacian on S'is
A,f(z) = lim 5"A, f(z)
n—oo

if this limit exists and A, f is continuous.

Gauss—Green (integration by parts) formula:

&) == [ SAfdu+ Y 10)0.50)

pedS
here p is the normalized Hausdorff measure, which is self-similar with weights

er
1
3?
> ek

j=1,2,3

w
1
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
p(A) . pP(A)

Nioyz < lmsup o

0< llm 1nf < oo

where the spectral dimension is

log 9
1<d, =% <2

Proposition. R(z) € 0(A,) <= z € 0(Apq1) where 2#£ — 1, -3, 2

and R(z) = z(5 + 4z).

Theorem (Fukushima, Shima). Every eigenvalue of A, has a form
A=5"1lim 5"R"(z)

n—oo

where R™™(zg) is a preimage of zy = —%, —Z under the n-th iteration power

of the polynomial R(z). The multiplicity of such an eigenvalue is C13™ + Cs.



the Sierpinski gasket is

)+ 3G (B

5S/2_

Theorem. Zeta function of the Laplacian on

573/2)

55/2—1

S/2

/2_3

+

S/2_3

i
|

f

Canls) = 3¢H) (5o



Definition. If £ is a fractal string, that is, a disjoint collection of intervals of
lengths 1}, then its geometric zeta function is {c(s) = Zlf

Theorem (Lapidus). If A:—% is a Neumann or Dirichlet Laplacian on £,

then Ca(s) = m=5¢(s)Ce(s).

Example: Cantor self-similar fractal string.

(e BB ______§o§8 8§ §B§ §B§B NN §]
If £ is the complement of the middle third Cantor set in [0, 1], then the complex

: . log 2+2i
spectral dimensions are 1 and {W: n€”Z},

Ce(8) = 755780 Cals) = C(s)%
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Definition. A post critically finite (p.c.f.) self-similar set F' is a compact con-
nected metric space with a finite boundary @F C F' and contractive injections
;1 F — F such that k
F=9%(F) = |Jui(F)
and i=1
Po(F) [ %w(F) C 9o (9F) () 1w (dF),

for any two different words v and w of the same length. Here for a finite word
w € {1,...,k}"™ we define Yy = Py, 0 ... 0 WPy,

We assume that OF is a minimal such subset of F'. We call 4,,(F") an m-cell.
The p.c.f. assumption is that every boundary point is contained
in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian A, is
the unique solution of the equation

k
> = 1
i=1



Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form €
which gives positive capacity to the boundary points and is self-similar in the sense
that

k
E(f) =D pi€(for)

=1
for a set of positive refinement weights p = {p; }¥_,.

Definition. The group G of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V,,) = V,, forall n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractal
F and G restricted to Vj is the whole permutation group of V4. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form & with equal
energy renormalization weights p; and

2
Eo(f, )= Y (Fl@) —fy)"
z,yeVy
Moreover, for any G-invariant self-similar measure v the Laplacian A, has the

spectral self-similarity property (a.k.a. spectral decimation).
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end of the talk :-)

Thank you!
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