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François Englert
From Wikipedia, the free encyclopedia

François Baron Englert (French: [ɑɡ̃lɛʁ]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,
C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,
together with Peter Higgs and the CERN.

Englert was awarded the 2013 Nobel Prize in Physics,
together with Peter Higgs for the discovery of the Higgs

mechanism.[5]
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METRIC SPACE-TIME AS FIXED POINT 

OF THE RENORMALIZATION GROUP EQUATIONS 

ON FRACTAL STRUCTURES 

F. ENGLERT, J.-M. FRI~RE x and M. ROOMAN 2 

Physique Thkorique, C.P. 225, Universitb Libre de Bruxelles, 1050 Brussels, Belgium 

Ph. SPINDEL 

Facultb des Sciences, Universitb de l'Etat it Mons, 7000 Mons, Belgium 

Received 19 February 1986 

We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = /3/(,8 + 1) separates the domain of euclidean 
metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation



The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the
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d logP���
d log�

� a�
b

�� c
(10)

agrees best with the data. In Fig. 1, the curve

DS��� � 4:02�
119

54� �
(11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range � 2
�40; 400�. Although both b and c individually are slightly
altered when one varies the range of �, their ratio b=c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

P��� �
1

�a=2�1� c=��b=2c
; (12)

implying a behavior

P��� �
�
��a=2 for large �;
���a�b=c�=2 for small �:

(13)

Our interpretation of Eqs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a�
b=c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts ��min; �max� for the range of �, as well
as different weightings of the errors, we obtain the asymp-
totic value

DS�� � 1� � 4:02
 0:1; (14)

which means that the spectral dimension extracted from
the large-� behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the ‘‘short-distance spectral dimension,’’ ob-
tained by extrapolating Eq. (12) to �! 0 is given by

DS�� � 0� � 1:80
 0:25; (15)

and thus is compatible with the integer value two.
Discussion.—The continuous change of spectral dimen-

sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘‘dimensional transmutation’’ to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since � from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling GN , it
is tempting to write the continuum version of (10) as

PV��� �
1

�2

1

1� const:�GN=�
; (16)

where const. is a constant of order one. Using the same
naı̈ve dimensional transmutation, one finds that our ‘‘uni-
verse’’ of 181.000 discrete building blocks has a spacetime
volume of the order of �20lPl�

4 in terms of the Planck
length lPl, and that the diffusion with � � 400 steps cor-
responds to a linear diffusion depth of 20lPl, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.
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Fractal space-times under the microscope:

a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig

Institute of Physics, University of Mainz,

Staudingerweg 7, D-55099 Mainz, Germany

E-mail: reuter@thep.physik.uni-mainz.de,

saueressig@thep.physik.uni-mainz.de

Abstract: The emergence of fractal features in the microscopic structure of space-time

is a common theme in many approaches to quantum gravity. In this work we carry out a

detailed renormalization group study of the spectral dimension ds and walk dimension dw
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-

ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-

proximately constant for an extended range of length scales: a classical regime where

ds = d, dw = 2, a semi-classical regime where ds = 2d/(2+d), dw = 2+d, and the UV-fixed

point regime where ds = d/2, dw = 4. On the length scales covered by three-dimensional

Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-

parent puzzle between the short distance behavior of the spectral dimension reported from

Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and

Asymptotic Safety.

Keywords: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-

ity, Nonperturbative Effects

ArXiv ePrint: 1110.5224

c© SISSA 2011 doi:10.1007/JHEP12(2011)012



Toy model: Hanoi towers game

The puzzle was invented by the French mathematician Édouard Lucas in 1883.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk 1, Zoran Šuniḱ
Department of Mathematics, Texas A&M University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +++++

Presented by Étienne Ghys

Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier

graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since

they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite

this article: R. Grigorchuk, Z. Šuniḱ, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

PSfrag repla
ements

a23a01a02 a03 a12a132; 3 0; 1 0; 2 0; 3
1; 21; 3 0001 112 22

33 3(01)
(02) (03)

(12)(13)(23) id
000 200 210 110 112 012 022 222

122212

202 102

100

120

010

020

220 002

221
121 101

001

021

011

201

211

111

a a a

a

a

a

a

a

a

a

b

b

b

b

b

b

bb

b

c

c

c

c

c

c

c

c

c

c

c

c

c

c a

a b

b

b

a

ba

c

b

Figure 1. The automaton generating H
(4) and the Schreier graph of H

(3) at level 3 / L’automate engendrant H
(4) et le

graphe de Schreier de H
(3) au niveau 3



Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk 1, Zoran Šuniḱ
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Initial physics motivation

R. Rammal and G. Toulouse, Random walks on fractal structures and
percolation clusters. J. Physique Letters 44 (1983)

R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45
(1984)

E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the
Schrödinger equation on some fractal lattices. Phys. Rev. B (3) 28 (1984)

Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I.
Quasilinear lattices. II. Sierpiński gaskets. III. Infinitely ramified lattices. J.
Phys. A 16 (1983)17 (1984)
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Main early mathematical results

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation theory
and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984–1985),
IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker, which at
time n is at X (n), on certain ‘fractal lattices’. For the ‘Sierpiński lattice’ in
dimension d we show that, as L→∞, the process YL(t) ≡ X ([(d + 3)Lt])/2L

converges in distribution to a diffusion on the Sierpin’ski gasket, a Cantor set of
Lebesgue measure zero. The analysis is based on a simple ‘renormalization group’
type argument, involving self-similarity and ‘decimation invariance’. In particular,

|X (n)| ∼ nγ ,

where γ = (ln 2)/ ln(d + 3)) 6 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods in
mathematical physics (Katata/Kyoto, 1985), 1987.
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M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski gasket. (1988)

M. T. Barlow, R. F. Bass, The construction of Brownian motion on the
Sierpiński carpet. Ann. Inst. Poincaré Probab. Statist. (1989)

S. Kusuoka, Dirichlet forms on fractals and products of random matrices.
(1989)

T. Lindstrøm, Brownian motion on nested fractals. Mem. Amer. Math. Soc.
420, 1989.

J. Kigami, A harmonic calculus on the Sierpiński spaces. (1989)

J. Béllissard, Renormalization group analysis and quasicrystals, Ideas and
methods in quantum and statistical physics (Oslo, 1988) Cambridge Univ.
Press, 1992.

M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket.
(1992)

J. Kigami, Harmonic calculus on p.c.f. self–similar sets. Trans. Amer. Math.
Soc. 335 (1993)

J. Kigami and M. L. Lapidus, Weyl’s problem for the spectral distribution of
Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158 (1993)
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Main classes of fractals considered

[0, 1]

Sierpiński gasket

nested fractals

p.c.f. self-similar sets, possibly with various symmetries

finitely ramified self-similar sets, possibly with various symmetries

infinitely ramified self-similar sets, with local symmetries, and with heat
kernel estimates (such as the Generalized Sierpiński carpets)

metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)
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Figure: Sierpiński gasket and Lindstrøm snowflake (nested fractals), p.c.f., finitely
ramified)
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Figure: Diamond fractals, non-p.c.f., but finitely ramified
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Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified
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Figure: Sierpiński carpet, infinitely ramified
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Existence, uniqueness, heat kernel estimates:
geometric renormalization for F -invariant Dirichlet forms
Brownian motion:
Thiele (1880), Bachelier (1900)
Einstein (1905), Smoluchowski (1906)
Wiener (1920’), Doob, Feller, Levy, Kolmogorov (1930’),
Doeblin, Dynkin, Hunt, Ito ...

distance ∼
√

time

“Einstein space–time relation for Brownian motion”

Wiener process in Rn satisfies 1
nE|Wt |2 = t and has a

Gaussian transition density:

pt(x, y) =
1

(4πt)n/2
exp

(
−
|x − y |2

4t

)
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De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

Li-Yau (1986) type estimates on a geodesically complete Riemannian
manifold with Ricci > 0:

pt(x, y) ∼
1

V (x,
√
t)

exp

(
−c

d(x, y)2

t

)

distance ∼
√

time
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Gaussian:

pt(x, y) =
1

(4πt)n/2
exp

(
−
|x − y |2

4t

)

Li-Yau Gaussian-type:

pt(x, y) ∼
1

V (x,
√
t)

exp

(
−c

d(x, y)2

t

)

Sub-Gaussian:

pt(x, y) ∼
1

tdH/dw
exp


−c

(
d(x, y)dw

t

) 1
dw−1




distance ∼ (time)
1

dw
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Brownian motion on Rd : E|Xt − X0| = ct1/2.

Anomalous diffusion: E|Xt − X0| = o(t1/2), or (in regular enough situations),

E|Xt − X0| ≈ t1/dw

with dw > 2.

Here dw is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in the
transport properties of disordered media, such as (critical) percolation clusters.
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pt(x, y) ∼
1

tdH/dw
exp

(
−c

d(x, y)
dw

dw−1

t
1

dw−1

)

distance ∼ (time)
1

dw

dH = Hausdorff dimension
1
γ

= dw = “walk dimension” (γ=diffusion index)

2dH
dw

= dS = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980’—)
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Theorem (Barlow, Bass, Kumagai (2006)).

Under natural assumptions on the MMD (geodesic Metric Measure space with a
regular symmetric conservative Dirichlet form), the sub-Gaussian heat kernel
estimates are stable under rough isometries, i.e. under maps that preserve
distance and energy up to scalar factors.

Gromov -Hausdorff + energy
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Theorem. (Barlow, Bass, Kumagai, T. (1989–2010).) On any fractal in the class
of generalized Sierpiński carpets there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries. Therefore there there is a unique corresponding symmetric Markov
process and a unique Laplacian. Moreover, the Markov process is Feller and its
transition density satisfies sub-Gaussian heat kernel estimates.
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Main difficulties: if ds < d , then dS < dH , dw > 2 and

the energy measure and the Hausdorff measure are mutually singular;

the domain of the Laplacian is not an algebra;

if d(x, y) is the shortest path metric, then d(x, ·) is not in the domain of
the Dirichlet form (not of finite energy) and so methods of Differential
geometry are not applicable;

Lipschitz functions are not of finite energy and, in fact, we can not compute
any non-constant functions of finite energy;

Fourier and complex analysis methods seem to be not applicable.

Main geometric tool: the folding map
Main analytic tool: Dirichlet (energy) forms
Main probabilistic tool: coupling
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The key result in the center of the proof: the classical elliptic Harnack
inequality. Any harmonic function (a local energy minimizer) u > 0 satisfies

sup
B(x,R/2)

u ≤ c1 inf
B(x,R/2)

u

where the constant c1 is determined only by the geometry of the
generalized Sierpiński carpet.

Remark. This lemma is a hard mix of analysis (commutativity of certain
geometric projections and the Laplacian) and probability (coupling).

Corollary. Harmonic functions are quasi-everywhere Hölder continuous
(Nash-Moser theory).
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BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke
Rogers, Nages Shanmugalingam, T.)

Open question: on the Sierpinski carpet

κ = dW − dH + dtH − 1 = dW − dH +
log 2

log 3

would give the optimal Hölder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al]

dtH := A new fractal dimension: The topological Hausdorff dimension
R.Balka, Z.Buczolich, M.Elekes - Adv. Math. 2015

References: Besov class via heat semigroup on Dirichlet spaces
I: Sobolev type inequalities
arXiv:1811.04267
II: BV functions and Gaussian heat kernel estimates arXiv:1811.11010
III: BV functions and sub-Gaussian heat kernel estimates arXiv:1903.10078

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 ∗ Rochester 17 / 34



Theorem. (Grigor’yan and Telcs, also [BBK])

On a MMD space the following are equivalent

(VD), (EHI ) and (RES)

(VD), (EHI ) and (ETE)

(PHI )

(HKE)

and the constants in each implication are effective.

Abbreviations: Metric Measure Dirichlet spaces, Volume Doubling, Elliptic
Harnack Inequality, Exit Time Estimates, Parabolic Harnack Inequality, Heat
Kernel Estimates.
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Theorem 1. Let (A,F), (B,F) be regular local conservative irreducible
Dirichlet forms on L2(F ,m) and

(1 + δ)A(u, u) ≤ B(u, u) for all u ∈ F

where δ > 0. Then (B−A,F) is a regular local conservative irreducible
Dirichlet form on L2(F ,m).

Technical lemma. If E is a local regular Dirichlet form with domain F , then
for any f ∈ F ∩ L∞(F ) we have Γ(f , f )(A) = 0, if A = {x∈F : f (x)=0}
where Γ(f , f ) is the energy measure or the “square field operator”

∫

F
gdΓ(f , f ) = 2E(f , fg)− E(f 2, g), g ∈ Fb.

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 ∗ Rochester 19 / 34



Definition

Let (E,F) be a Dirichlet form on L2(F , µ). We say that E is invariant with
respect to all the local symmetries of F (F -invariant or E ∈ E) if

(1) If S ∈ Sn(F ), then USRS f ∈ F for any f ∈ F .

(2) Let n ≥ 0 and S1, S2 be any two elements of Sn, and let Φ be any
isometry of Rd which maps S1 onto S2. If f ∈ FS2 , then f ◦ Φ ∈ FS1

and ES1 (f ◦ Φ, f ◦ Φ) = ES2 (f , f ) where

ES(g , g) =
1

mn
F
E(USg ,USg)

and Dom(ES) = {g : g maps S to R,USg ∈ F}.

(3) E(f , f ) =
∑

S∈Sn(F ) ES(RS f ,RS f ) for all f ∈ F

Lemma

Let (A,F1), (B,F2) ∈ E with F1 = F2 and A ≥ B. Then
C = (1 + δ)A− B ∈ E for any δ > 0. Hence we can use the Hilbert projective
metric on E.
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Θf =
1

mn
F

∑

S∈Sn(F )

USRS f .

Note that Θ is a projection operator because Θ2 = Θ. It is bounded on C(F )
and is an orthogonal projection on L2(F , µ).

Lemma

Assume that E is a local regular Dirichlet form on F , Tt is its semigroup, and
USRS f ∈ F whenever S ∈ Sn(F ) and f ∈ F . Then the following, for all
f , g ∈ F , are equivalent:

(a): E(f , f ) =
∑

S∈Sn(F )

ES(RS f ,RS f )

(b): E(Θf , g) = E(f ,Θg) (c): TtΘf = ΘTtf
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A0

A1

A′1 s
v∗

The half-face A1 corresponds to a “slide move”,
and the half-face A′1 corresponds to a “corner move”,

analogues of the “corner” and “knight’s” moves in [BB89].
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sy s
v∗

D(y)

D1

D2
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2 D. J. KELLEHER, H. PANZO, A. BRZOSKA AND A. TEPLYAEV

Figure 1. Barycentric subdivision of a 2-simplex, the graphs GT
0 ,

GT
1 and GT

2 .

Figure 2. Adjacency (dual) graph G2, in bold, and the barycen-
tric subdivision graph pictured together with the thin image of
GT

2 .

heat kernel estimates (see [2–4, 6, 7, 9] and references therein). Typically for
such fractal examples, Lipschitz functions play little or no role, as intrinsically
smooth functions are only Hölder continuous. In some sense all these results
are related to the Nash-Moser theory of uniformly elliptic operators. However,
there are natural spaces that have no volume doubling, no curvature bounds,
and no heat kernel estimates. Analysis of such spaces is in its infancy, and
considering even simplest examples is very challenging. After laying some of the
initial framework for this model, our aim is to connect to a series of other works,
such as [11,30,43–45,58,65].

The repeated barycentric subdivision of a simplex is a classical and fundamen-
tal notion from algebraic topology, see [31, and references therein]. Recently it
was considered from a probabilistic point of view in [17–20,69] and graph theory
point of view in [51, 52]. Understanding how resistance scales on finite approxi-
mating graphs is the first step to developing analysis on fractals and fractal-like
structures, such as self-similar graphs and groups, see [8, 23, 40, 62, 63, and ref-
erences therein]. For finitely ramified post-critically finite fractals, including



BARLOW–BASS RESISTANCE ESTIMATES FOR HEXACARPET 3

Figure 3. On the left: the graph GT
4 for barycentric subdivision

of a 2-simplex. On the right: the adjacency (dual) graph G4.

nested fractals, the resistance scales by the same factor between any two lev-
els of approximating graphs (see [46, 47, 57, and references therein]), and this
fact can be used to prove the existence and uniqueness of a Dirichlet form on
the limiting fractal structures. In the infinitely ramified case, resistance esti-
mates are more difficult to obtain, but are just as important to understanding
diffusions on fractals. Barlow and Bass [2–4, 6, 7, 9] proved such estimates for
the Sierpinski carpet and its generalizations. These techniques were extended
to understanding resistance estimates between more complicated regions of the
Sierpinski carpet, see [60]. The paper [53] provides another technique for prov-
ing the existence of Dirichlet forms on non-finitely ramified self-similar fractals,
which estimates the parameter ρ by studying the Poincaré inequalities on the
approximating graphs of the fractals. The long term motivation for our work
comes from probability and analysis on fractals [5,13,14,61,64,66], vector anal-
ysis for Dirichlet forms [33–35, 37–39, 54], and especially from the works on the
heat kernel estimates [3, 6, 7, 24, 27,41,42,48–50,55,56,67].

In general terms, a Dirichlet form on a fractal is a bilinear form which is
analogous to the classic Dirichlet energy on Rd given by E (f) =

∫
|∇f |2 dx.

Dirichlet forms have many applications in geometry, analysis and probability.
The theory of Dirichlet forms is equivalent, in a certain sense, to the theory of
symmetric Markov processes, see [15, 16, 22]. The potential theoretic properties
of the Dirichlet form have implications for this stochastic process. In particular,
the resistance between two boundary sets is related to the crossing times. In
the discrete setting, the Dirichlet form is the graph energy. In this case the
resistance between two sets is determined using Kirchhoff’s laws. For a more
thorough introduction to these topics, one can see, for example, [21,59].

Although the results of Barlow and Bass et al are applicable to a large class
of fractals, we concentrate on one prototypical but difficult to analyze gener-
alization of the classical Sierpinski carpet. Our work further develops existing
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techniques to obtain resistance scaling estimates for the 1-skeleton of n-times
iterated barycentric subdivisions of a triangle which we will denote GT

n , and its
weak dual the hexacarpet (introduced in [12]), which we will denote Gn. In our
case, on the 1-skeleton GT

n , the Markov process jumps between corners of the
triangles in the subdivision. Our theoretical estimates correspond to a process
with limiting spectral dimension between 2.28 and 2.38. The Markov process on
the hexacarpet graphs (which are denoted by G and GH later on) corresponds to
a random walk which jumps between the centers of these triangles, with spectral
dimension between 1.63 and 1.77 (≈ 1.74 using the numerical estimates in [12]).
This is a substantial difference implying, in particular, that one Markov process
is not recurrent, while the other is recurrent. From the point of view of fractal
analysis, our results suggest that the corresponding self-similar diffusion is not
unique, unlike [7, 29].

If RT
n and Rn is the resistance between the appropriate boundaries in GT

n

and GH
n respectively (see Figures 1, 2, 3, 4), then we prove that the resistance

RT
n and Rn scale by constants ρT and ρ respectively, and obtain estimates on

these constants. Note that in the current work the hexacarpet graph GH
n is a

modification of Gn by adding a set of “boundary” vertexes. Our main result is
the following theorem.

Theorem 1.1. The resistances across graphs GT
n and GH

n (defined in Subsec-
tion 2.2) are reciprocals, that is RT

n = 1/Rn, and the asymptotic limits

log ρT = lim
n→∞

1

n
logRT

n and log ρ = lim
n→∞

1

n
logRn

exist (and ρT = 1/ρ). Furthermore, 2/3 ≤ ρT ≤ 4/5 and 5/4 ≤ ρ ≤ 3/2.

These estimates agree with the numerical experiments from [12], which suggest
that there exists a limiting Dirichlet form on these fractals and estimates ρ ≈
1.306, and hence ρT ≈ 0.7655.

Conjecture 1. In the case 5/4 ≤ ρ ≤ 3/2 (ρ ≈ 1.306), we conjecture that the
recent results of A. Grigor’yan, J. Hu, K.-S. Lau and M. Yang in [24–26,28] can
imply existence of the Dirichlet form.

Conjecture 2. Since 2/3 ≤ ρT ≤ 4/5 < 5/4 ≤ ρ ≤ 3/2, we conjecture that
there is essentially no uniqueness of the Dirichlet forms, spectral dimensions,
resistance scaling factors etc for repeated barycentric subdivisions.

This paper is organized as follows. Subsection 2.1 defines general graph energy.
Subsection 2.2 lays out the definitions of GH

n and GT
n and shows how to take

advantage of the duality to prove that Rn = 1/RT
n . In Section 3 we prove sub-

multiplicative estimates Rm+n ≤ cRmRn for some constant c independent of m
and n in a fashion generalized from [3]. Then Fekete’s theorem implies that the
limits ρ and ρT exist. To show that these limits are finite, in Subsections 3.3 and



Diffusions on the pattern spaces of aperiodic Delone sets
(Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevino, T.)

A subset Λ ⊂ Rd is a Delone set if it is uniformly discrete:

∃ε > 0 : |~x − ~y | > ε ∀~x, ~y ∈ Λ

and relatively dense:

∃R > 0 : Λ ∩ BR(~x) 6= ∅ ∀~x ∈ Rd .

A Delone set has finite local complexity if ∀R > 0∃ finitely many clusters
P1, . . . ,PnR

such that for any ~x ∈ Rd there is an i such that the set BR(~x) ∩ Λ

is translation-equivalent to Pi . A Delone set Λ is aperiodic if Λ− ~t = Λ implies
~t = ~0. It is repetitive if for any cluster P ⊂ Λ there exists RP > 0 such that for
any ~x ∈ Rd the cluster BRP (~x) ∩ Λ contains a cluster which is
translation-equivalent to P. These sets have applications in crystallography
(≈ 1920), coding theory, approximation algorithms, and the theory of
quasicrystals.
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Electron diffraction picture of a Zn-Mg-Ho quasicrystal

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some
twenty years later, they were found to apply to the study of natural quasicrystals
(1982 Dan Shechtman, 2011 Nobel Prize in Chemistry).
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Penrose tiling
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pattern space of a Delone set

Let Λ0 ⊂ Rd be a Delone set. The pattern space (hull) of Λ0 is the closure of
the set of translates of Λ0 with respect to the metric %, i.e.

ΩΛ0 =
{
ϕ~t (Λ0) : ~t ∈ Rd

}
.

Definition

Let Λ0 ⊂ Rd be a Delone set and denote by ϕ~t (Λ0) = Λ0 − ~t its translation by
the vector ~t ∈ Rd . For any two translates Λ1 and Λ2 of Λ0 define %(Λ1,Λ2) =

inf{ε > 0 : ∃ ~s, ~t ∈ Bε(~0) : B 1
ε

(~0) ∩ ϕ~s(Λ1) = B 1
ε

(~0) ∩ ϕ~t(Λ2)} ∧ 2−1/2

Assumption

The action of Rd on Ω is uniquely ergodic:
Ω is a compact metric space with the unique Rd -invariant probability measure µ.
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Topological solenoids
(similar topological features as the pattern space Ω):

The harmonic measures of Lucy Garnett A.Candel, Adv. Math, 2003

Foliations, the ergodic theorem and Brownian motion L.Garnett, JFA 1983
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Theorem

(i) If ~W = ( ~Wt)t≥0 is the standard Gaussian Brownian motion on Rd , then for

any Λ ∈ Ω the process XΛ
t := ϕ ~Wt

(Λ) = Λ− ~Wt is a conservative Feller
diffusion on (Ω, %).

(ii) The semigroup Ptf (Λ) = E[f (XΛ
t )] is

self-adjoint on L2
µ, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d .

(iii) The semigroup (Pt)t>0 does not admit heat kernels with
respect to µ. It does have Gaussian heat kernel with respect to the
not-σ-finite (no Radon-Nykodim theorem) pushforward measure λd

Ω

pΩ(t,Λ1,Λ2) =

{
pRd (t, h−1

Λ1
(Λ2)) if Λ2 ∈ orb(Λ1),

0 otherwise.
(1)

(iv) There are no semi-bounded or L1 harmonic functions
(Liouville-type).
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no classical inequalities

Useful versions of the Poincare, Nash, Sobolev, Harnack
inequalities DO NOT HOLD,
except in orbit-wise sense.
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spectral properties

Theorem

The unitary Koopman operators U~t on L2(Ω, µ) defined by U~t f = f ◦ ϕ~t
commute with the heat semigroup

U~tPt = PtU~t

hence commute with the Laplacian ∆, and all spectral operators, such as the
unitary Schrödinger semigroup.

... hence we may have continuous spectrum (no eigenvalues) under some
assumptions even though µ is a probability measure on the compact set Ω.

Under special conditions Pt may be connected to the evolution of a Phason:
“Phason is a quasiparticle existing in quasicrystals due to their specific,
quasiperiodic lattice structure. Similar to phonon, phason is associated with
atomic motion. However, whereas phonons are related to translation of atoms,
phasons are associated with atomic rearrangements. As a result of these
rearrangements, waves, describing the position of atoms in crystal, change phase,
thus the term “phason” (from the wikipedia)”.
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Phason evolution

Corollary

The unitary Koopman operators U~t on L2(Ω, µ) defined by U~t f = f ◦ ϕ~t
commute with the heat semigroup

U~tPt = PtU~t

hence commute with the Laplacian ∆, and all spectral operators, including the
unitary Schrödinger semigroup e i∆t

U~te
i∆t = e i∆tU~t

Recent physics work on phason (“accounts for the freedom to choose the origin”):
Topological Properties of Quasiperiodic Tilings
(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans
Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
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TopologicalPropertiesofQuasiperiodicTilings
Yaroslav Don, Eli Levy and Eric AkkermansDepartment of Physics, Technion – Israel Institute of Technology, Haifa, Israel

Abstract
Topological properties of finite quasiperiodic tilings are examined. We study two spe-
cific physical quantities: (a) the structure factor related to the Fourier transform of the
structure; (b) spectral properties (using scattering matrix formalism) of the correspond-
ing quasiperiodic Hamiltonian. We show that both quantities involve a phase, whose
windings describe topological numbers. We link these two phases, thus establishing
a “Bloch theorem” for specific types of quasiperiodic tilings.

Contact Information
Email: yarosd@campus.technion.ac.il
This work was supported by the Israel Science Foundation Grant No. 924/09.
We thank C. Schochet for useful discussions.

Substitution Rules – 1D Tilings
Define a binary substitution rule by

σ (a) = aαbβ
σ (b) = aγbδ ⇐⇒ a 7→ aαbβ

b 7→ aγbδ .
Associate occurrence matrix: M = ( α βγ δ

) Consider only primitive matrices:
• Largest eigenvalue λ1 > 1 (Perron-Frobenius)
• Left and right first eigenvectors are strictly positive

Distribution of letters underlies distribution of atoms:
x0• a x1• b x2• b x3• a x4• b x5• a x6• b x7• . . .

Define atomic density
ρ (x) =∑k δ (x − xk ) ,

with distances for a and b given by δk = xk+1 − xk = da,b.
Let d̄ be the mean distance and uk the deviations from the mean. Define

xk = d̄ k + δ uk , δ ≡ da − db.
Let g (ξ) = ∑

k e−iξxk be the diffraction pattern, and S (ξ) = |g (ξ)|2 the structure
factor. Using ξ0 = 2π/d̄, the Bragg peaks are located at [1]

ξm,N = mλ−N1 ξ0, m,N ∈ Z.
We consider the following families:
Pisot. The second eigenvalue |λ2|<1.
Non-Pisot. The second eigenvalue |λ2| ≥ 1.

Fluctuations uk are unbounded [2]; there are no Bragg peaks [3].
Examine the following examples:
Fibonacci. a 7→ ab , b 7→ a. It is Pisot, M = ( 1 11 0

), λ1 = (√5 + 1)/2 ≡ τ the golden
ratio and λ2 = −τ−1. Bragg peaks are located at ξp,q = (p+ q/τ) ξ0.
In C&P language, s = 1/τ and

ξp,q/ξ0 = p+ qs p, q ∈ Z.
Thue-Morse. a 7→ ab , b 7→ ba. Here it is Pisot, M = ( 1 11 1

),
λ1 = 2 and λ2 = 0. Bragg peaks: ξm,N = m 2−N ξ0, m,N ∈ Z.

Spectral Properties of Tilings
Consider a 1D tight-binding equation,
− (ψk+1 + ψk−1) + Vkψk = 2Eψk .

The gaps in the integrated density of
states are given by the gap labeling
theorem [4],
Nm,N = 1

cmλ−N1 (mod 1), m,N ∈ Z.
Here, c is the gcd of λ1 and its corre-
sponding eigenvectors in both M and
the collared M2.
In C&P sequences,
Np,q = p+ qs (mod 1) p, q ∈ Z.

Structural Phase – Phason as a Gauge Field
Another way to define a tiling is by using a characteristic function. We consider the
following choice [5, 6]:

χ (n, φ) = sign [cos (2πn s+ φ)− cos (π s)] .
with s→ sN = cN/dN the slope of the C&P scheme, and n = 0 . . . dN − 1.
The phase φ, called a phason, accounts for the gauge freedom to choose the origin. It
is taken discretely as φ→ φ` = 2π`/dN .
Let s0 (n) = χ (n, 0). Let T [s0 (n)] = s0 (n+ 1) be the translation operator. Define

Σ0 =



s0T [s0]· · ·
T dN−1 [s0]


 =⇒ Σ0 (n, `) = T ` [s0 (n)] .

Consider now the row permuted Σ1

Σ1 (n, `) = T m(`) [s0 (n)] , m (`) = ` c−1N (mod dN ).
Lemma. For φ` = 2π`/dN with n, ` = 0 . . . dN − 1 one has χ (n, φ` ) = Σ1 (n, `).

This defines a discrete phason φ` for the structure.
The structure of Σ1 (dN × dN ) is that of a torus:

=⇒

The discrete Fourier transform of Σ1 about n reads
G (ξ, `) ≡∑dN−1

n=0 ω−ξn Σ1 (n, `) = ωm(`)ξ ς0 (ξ) .
• The structure factor S (ξ, φ) = |ς0 (ξ)|2 is φ-independent.
• The phase of G (ξ, `) reads

Θ (ξ, `) ≡ argωm(`)ξ = φ` ξ/cN (mod 2π).
Corollary. For any diffraction peak (discrete Bragg peak) ξp,q = qcN one has the

(discrete) winding number at ξp,q,
Θ (ξp,q) = 2π

dN ` q,
hence

Wξp,q = 1
2π
∫ 2π

0
∂Θ (ξ = ξp,q, φ)

∂φ dφ = q.

Here we used the Fibonacci sequence (s = 1/τ) with dN = 89 sites. The winding
numbers are indicated by the red numbers above.
Remark. The analysis above for the winding numbers is done for rational approxima-

tions sN = cN/dN . It holds by construction for the irrational case sN → s.

Spectral Phase: Scattering Matrix Approach
Spectral properties are also accessible from the continuous wave equation,

−ψ ′′ (x)− k20 v (x)ψ (x) = k20 ψ (x) ,
with scattering boundary conditions.

The scattering S-matrix is defined by ( −→o←−o
) = ( −→r (k) t(k)

t(k) ←−r (k)
)( −→ı←−ı

) ≡ S( −→ı←−ı
), with

−→r = −→R ei−→θ and ←−r = −→R ei←−θ . It is unitary and can be diagonalized to S 7→ (
eiγ1 00 eiγ2

)
so that detS = e2iδ(k) with the total phase shift δ (k) = (γ1 (k) + γ2 (k)) /2 independent
of φ. We are interested in the chiral phase,

α (k, φ) = −→θ (k, φ)−←−θ (k, φ) .
Using the Krein-Schwinger formula [7] allows to relate the change of density of states
to the scattering data,

ρ (k)− ρ0 (k) = 1
2π Im d

dk ln detS (k) .
So that the integrated density of states is

N (k)−N0 (k) = δ (k) /π.
The total phase shift δ (k) is independent of the phason φ unlike the chiral phase
α (k, φ), whose winding for values of k inside the gaps is given by [8],

Wαg = 1
2π
∫ 2π

0
∂α (k = kp,q, φ)

∂φ dφ = 2q.

Here we used the Fibonacci sequence (s = 1/τ) with dN = 233 sites.

Relation between both Phases: a “Bloch Theorem”
In 1D C&P structures, The locations of Bragg peaks for a diffraction spectrum corre-
spond to the spectral density of states,

ξp,q/dN = p+ qs = Np,q p, q ∈ Z.
Drawing the integrated density of states N (red line) on top the structural phase
Θ (ξ, φ), shows numerically the relation between ξp,q and Np,q.

Both ξp,q and Np,q are isomorphic to Z⊕ sZ. The second Z, corresponding to q, can
be derived independently from the windings of both the structural phase Θ (φ) and the
chiral phase α (φ). Since these phases account for windings, they are isomorphic

Θ (φ) ∼= α (φ).
The winding gives a topological interpretation to these phases. This result can be
viewed as a Bloch theorem for quasiperiodic tilings [9].

Cut and Project Scheme
An alternative method to build quasiperiodic tilings is the Cut & Project scheme. The
procedure is as follows [10].
Cut.

1. Start with an n-dimensional space R = Rn.
2. Insert “atoms” on the integer lattice Z = Zn.
3. Divide R into the physical space E and the internal space E⊥ such that E ⊕
E⊥ = R and E ∩ E⊥ = ∅.

4. To resolve ambiguity for E, choose an initial location c ∈ R such that E passes
through c. There is no such requirement for E⊥.

Project.
1. Inspect the hypercube In = [−0.5, 0.5)n.
2. The window is its projection on the internal space W = π⊥ (In).
3. The strip is the product with the physical space S = W ⊗ E.
4. Choose only the points inside the strip S∩Z , and project them onto the physical

space, Y = π (S ∩ Z ).
5. The atomic density is given by ρ (x) ≡ ρc (x) = ∑

y∈Y δ (x − y) with x ∈ E.
Note the implicit dependency of Y on c.

For 1D systems, define the phason
φ = 2π b/W b ∈ E⊥,

where W is the window above.
The slope s is given by

1/s = 1 + cotβ.

Useful Tools
In periodic structures, topological numbers are described as Chern numbers. This does
not happen in quasiperiodic tilings, since there exists no notion of a Brillouin zone.
But alternative tools exist to describe topological properties of quasiperiodic tilings.
We now enumerate some of them.
• Tiling space T (dependent on λ1 or s) and its hull ΩT .
• Čech cohomology Ȟ1 (ΩT ), simplicial cohomology H1 (Γn)and Bratteli graphs [11, 12].
• K -theory, K0 (ΩT ) group and the abstract gap labeling theorem [4, 13].
• The Bloch theorem described before can be given an interpolation for 1D C&P

tilings (for an irrational slope s /∈ Q) by means of the “commutative diagram”:

Θ (φ)
OO

!∼= // α (φ)
OO

Z2 ∼= Ȟ1 (ΩC&P)
Cµ(s)
��

ψ // K0 (ΩC&P) ∼= Z⊕ Z

τ∗
��

Z⊕ sZ ∼= // Z⊕ sZ
The topological features are contained in Ȟ1 or K0 groups.

Conclusions
• We have defined two types of phases—a structural and spectral one—whose

windings unveil topological features of quasiperiodic tilings.
• We found a relation between these two phases, which can be interpreted as a

Bloch-like theorem.
• We have considered here a subset of tilings, which are known as Sturmian

(C&P) words. Our results can be extended to a broader families of tilings in one
dimension, and to tiles in higher dimensions (D > 1).

• All these features have been observed experimentally [5, 6].

References
[1] J. M. Luck, C. Godrèche, A. Janner, and T. Janssen, J. Phys. A 26, 1951 (1993).
[2] J. M. Dumont, in Springer proceedings in physics, edited by J.-M. Luck, P. Moussa, and M. Waldschmidt, (Springer

Berlin Heidelberg, 1990), pp. 185–194.
[3] C. Godrèche, and J. M. Luck, Phys. Rev. B 45, 176 (1992).
[4] J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
[5] F. Baboux, E. Levy, A. Lemaître, C. Gómez, E. Galopin, L. Le Gratiet, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans,

Phys. Rev. B 95, 161114 (2017).

[6] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E. Akkermans, F. Gerbier, and J. Beugnon, Phys. Rev. Lett. 119,
215304 (2017).

[7] E. Akkermans, G. V. Dunne, and E. Levy, in Optics of aperiodic structures: fundamentals and device applications,
edited by L. Dal Negro, (Pan Stanford Publishing, 2014), pp. 407–449.

[8] E. Levy, A. Barak, A. Fisher, and E. Akkermans, (2015) https://arxiv.org/abs/1509.04028.
[9] Y. Don, D. Gitelman, E. Levy, and E. Akkermans, (in preperation), 2018.

[10] M. Duneau, and A. Katz, Phys. Rev. Lett. 54, 2688 (1985).

[11] L. A. Sadun, Vol. 46, University Lecture Series (American Mathematical Society, 2008).
[12] J. E. Anderson, and I. F. Putnam, Ergod. Th. Dynam. Sys. 18, 509 (1998).
[13] J. Kellendonk, and I. F. Putnam, in Directions in mathematical quasicrystals, Vol. 13, edited by M. Baake, and R. V.

Moody, CRM Monograph Series (American Mathematical Society, 2000), pp. 186–215.
[14] E. Bombieri, and J. E. Taylor, J. Phys. Colloq. 47, C3–19–C3 (1986).





Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L2(Ω, µ,R1) admits the orthogonal
decomposition

L2(Ω, µ,R1) = Im∇⊕ R(dx). (2)

In other words, the L2-cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.
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end of the talk :-)

Thank you!
Cornell Conferences on

Analysis, Probability, and Mathematical Physics
on Fractals

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 ∗ Rochester 34 / 34


	Introduction: the spectral dimension of the universe
	Toy model: Hanoi towers game
	Existence, uniqueness, heat kernel estimates: geometric renormalization for F-invariant Dirichlet forms
	(Barlow, Bass, Kumagai, T.)

	Canonical diffusions on the pattern spaces of aperiodic Delone sets
	(Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevino, T.)


