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Plan of the talk:

@ Introduction: the spectral dimension of the universe

© Toy model: Hanoi towers game
@ Existence, uniqueness, heat kernel estimates:
geometric renormalization for F-invariant Dirichlet forms

o (Barlow, Bass, Kumagai, T.)

e Canonical diffusions on the pattern spaces of aperiodic Delone sets
o (Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevino, T.)
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From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [agleg]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007
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North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.
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Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin - to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0y, 0, and 0, associated to 0-dimensional
geometries are located at the origin and at infinity on the (a, B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of

them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.
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The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantum field thearv.— surements of the laroe-seale dimensionality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dy(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.

Random Geometry and Quantum Gravity

A thematic semestre at Institut Henri Poincaré

14 April, 2020 - 10 July, 2020

Organizers : John BARRETT, Nicolas CURIEN, Razvan GURAU,
Renate LOLL, Gregory MIERMONT, Adrian TANASA
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension d; and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2+d), d,, = 2+d, and the UV-fixed
point regime where dy = d/2,d,, = 4. On the length scales covered by three-dimensional
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT). Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects




Toy model: Hanoi towers game

W Tours de Hanoi — Wikipédia X + - =
< > C O @& https//frwikipedia.org/wiki/Tours_de Hanoi & B« BEO9 6

aNon connecté Discussion Contributions Créer un compte Se connecte

Article  Discussion Lire Modifier Plus v~ |Rechercherdans Wikipe ¢

\an&PéDIA -
L'encyclopédie libre Tours de Hanol

Aot o Pour les articles homonymes, voir Hanoi (homonymie).

Portails thématiques

Atdla hEsan Les tours de Hanoi (originellement, la

Contact tour d'Hanoi®) sont un jeu de réflexion
imaginé par le mathématicien francais

Coninbuer Edouard Lucas, et consistant a déplacer
Débuter sur Wikipédia des disques de diamétres différents d'une
Aide Modele d'une tour de Hanoi (avec *

tour de « départ » a une tour d'« arrivée » o
Communauté huit disques).

en passant par une tour « intermédiaire »
Modifications récentes P P !

The puzzle was invented by the French mathematician Edouard Lucas in 1883.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Tezas AGM University, MS-3368, College Station, TX, 77843-3368, USA
Received 23 January, 2006; accepted after revision +-+-+-+-+
Presented by Ftienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H(*) et le
graphe de Schreier de H®) au niveau 3






Initial physics motivation

@ R. Rammal and G. Toulouse, Random walks on fractal structures and
percolation clusters. J. Physique Letters 44 (1983)

@ R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45
(1984)

@ E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the
Schrédinger equation on some fractal lattices. Phys. Rev. B (3) 28 (1984)

@ Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I.
Quasilinear lattices. l. Sierpiriski gaskets. Ill. Infinitely ramified lattices. J.
Phys. A 16 (1983)17 (1984)
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Main early mathematical results

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation theory
and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984-1985),
IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker, which at
time n is at X(n), on certain ‘fractal lattices'. For the ‘Sierpiriski lattice’ in
dimension d we show that, as L — oo, the process Y. (t) = X([(d + 3)‘t])/2t
converges in distribution to a diffusion on the Sierpin'ski gasket, a Cantor set of
Lebesgue measure zero. The analysis is based on a simple ‘renormalization group’
type argument, involving self-similarity and ‘decimation invariance’. In particular,

|X(n)| ~ n7,
where v = (In2)/In(d + 3)) < 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods in
mathematical physics (Katata/Kyoto, 1985), 1987.
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ANALYSE MATHEVIATIQUE. — Sur une courbe dont toul poznl est un poznt

de ramzﬁcatwn Note (* ) de M. W. Sweremvski, présentée par M. Emile
Picard.

Le but de cetie Note est de donner un exemple d’une courbe canto-
rienne et jordanienne en méme temps, dont lout point est un point de
ramification. (Nous appelons point de ramification d’une courbe ¢ un
point p de cette courbe, s'il existe trois continus, sous-ensembles de @,
ayant deux & deux le point p et seulement ce point commun.)

Soient T un triangle régulierdonné; A, B, Crespectivement ses sommets :
gauche, supérieur et droit. En joignant les milieux descétés du triangle T,
nous obtenons quatre nouveaux triangles réguliers (/ig. 1), dont trois, T,
T,, T, contenant respectivement les sommets A, B, C, sont situés parallé-
lement & T et le quatriéme triangle U contient le centre du triangle T '
nous exclurons tout I'intérieur du triangle U,

Lessommets des triangles T;, T,, Ty nousles dé51gnerons respectivement :

(1) Séance du 1°* février 1915,



LIARgLes Uy, U,, U,, situés parallélement & U, dont les intérieurs seront

exclus (fig. 2). Avec chacun des triangles T, , procédons de méme et ainsi



d’eux se rencontrent quatre segments différents, situés entiérement sur
I’ensemble e.

Dong, tous les points de la courbe €, sauf peut-élre les points A, B, C,
sont ses points de ramification.

Pour obtenir une courbe dont tous les points sans exception sont ses

Tig. 5. Fig. 6.

\

f
points de ramification, il suffit de diviser un hexagone régulier en six

toionmlac ndoulinne at dann nhnann Alany incanine nna nannha A




e M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski gasket. (1988)

e M. T. Barlow, R. F. Bass, The construction of Brownian motion on the
Sierpiriski carpet. Ann. Inst. Poincaré Probab. Statist. (1989)

o S. Kusuoka, Dirichlet forms on fractals and products of random matrices.
(1989)

o T. Lindstrgm, Brownian motion on nested fractals. Mem. Amer. Math. Soc.
420, 1989.

e J. Kigami, A harmonic calculus on the Sierpiriski spaces. (1989)

o J. Béllissard, Renormalization group analysis and quasicrystals, |deas and
methods in quantum and statistical physics (Oslo, 1988) Cambridge Univ.
Press, 1992.

@ M. Fukushima and T. Shima, On a spectral analysis for the Sierpiriski gasket.
(1992)

o J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math.

Soc. 335 (1993)

o J. Kigami and M. L. Lapidus, Weyl!'s problem for the spectral distribution of
Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158 (1993)
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Main classes of fractals considered

e [0,1]
Sierpinski gasket
nested fractals

o

°

@ p.c.f. self-similar sets, possibly with various symmetries

o finitely ramified self-similar sets, possibly with various symmetries
o

infinitely ramified self-similar sets, with local symmetries, and with heat
kernel estimates (such as the Generalized Sierpinski carpets)

@ metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)
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Figure: Sierpiniski gasket and Lindstrgm snowflake (nested fractals), p.c.f., finitely
ramified)
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Figure: Diamond fractals, non-p.c.f., but finitely ramified
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Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified
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Figure: Sierpinski carpet, infinitely ramified
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Existence, uniqueness, heat kernel estimates:

geometric renormalization for F-invariant Dirichlet forms

Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920'), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, Ito ...

distance ~ V time

“Einstein space—time relation for Brownian motion”

Wiener process in R" satisfies %E| W;|? = t and has a
Gaussian transition density:

1 Ix —y?
pt(x,y) = WGXP T ar

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 8 /34



o De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

o Li-Yau (1986) type estimates on a geodesically complete Riemannian
manifold with Ricci > 0:

1 d(X,y)2
pt(x,y) ~ WGXP —CT

distance ~ V' time

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 9 /34



Gaussian:

1 Ix — y|?
p:(x,y) = Wexp T ar

Li-Yau Gaussian-type:

1 d(x,y)?
pe(x,y) ~ mexp —Cf

Sub-Gaussian:

t

1
1 d(x,y)% \ ™~
pt(x,y) ~ WGXP —Cc\—)

distance ~ (time)ﬁ
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Brownian motion on RY: E|X; — Xo| = ct!/2.

Anomalous diffusion: E|X; — Xo| = o(t'/?), or (in regular enough situations),
E| X, — Xo| = t/d

with d,, > 2.

Here d,, is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in the
transport properties of disordered media, such as (critical) percolation clusters.

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 11 /34



tdw—T1

1 d(x, y) ™
pt(x,y) ~ WGXP —C———

distance ~ (time)ﬁ

dy = Hausdorff dimension

% = d,, = "walk dimension” (~y=diffusion index)
2(% = ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980'—)
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Theorem (Barlow, Bass, Kumagai (2006)).

Under natural assumptions on the MMD (geodesic Metric Measure space with a
regular symmetric conservative Dirichlet form), the sub-Gaussian heat kernel
estimates are stable under rough isometries, i.e. under maps that preserve
distance and energy up to scalar factors.

Gromov-Hausdorff + energy

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 13 /34



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any fractal in the class
of generalized Sierpinski carpets there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries. Therefore there there is a unique corresponding symmetric Markov
process and a unique Laplacian. Moreover, the Markov process is Feller and its
transition density satisfies sub-Gaussian heat kernel estimates.

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 14 / 34



Main difficulties: if ds < d, then ds < dy, d,, > 2 and

o the energy measure and the Hausdorff measure are mutually singular;

@ the domain of the Laplacian is not an algebra;

o if d(x,y) is the shortest path metric, then d(x,-) is not in the domain of
the Dirichlet form (not of finite energy) and so methods of Differential
geometry are not applicable;

@ Lipschitz functions are not of finite energy and, in fact, we can not compute
any non-constant functions of finite energy;

@ Fourier and complex analysis methods seem to be not applicable.

Main geometric tool: the folding map
Main analytic tool: Dirichlet (energy) forms
Main probabilistic tool: coupling

Sasha Teplyaev (UConn) 2025 * Rochester 15 / 34



The key result in the center of the proof: the classical elliptic Harnack
inequality. Any harmonic function (a local energy minimizer) u > 0 satisfies

sup v < ¢ inf u
B(x,R/2) B(x,R/2)

where the constant c; is determined only by the geometry of the
generalized Sierpinski carpet.

Remark. This lemma is a hard mix of analysis (commutativity of certain
geometric projections and the Laplacian) and probability (coupling).

Corollary. Harmonic functions are quasi-everywhere Holder continuous
(Nash-Moser theory).

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 16 / 34



BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke
Rogers, Nages Shanmugalingam, T.)

Open question: on the Sierpinski carpet

log 2
k=dw —dy+dy—1=dw —dy+

log 3

would give the optimal Holder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al|

d:i:= A new fractal dimension: The topological Hausdorff dimension
R.Balka, Z.Buczolich, M.Elekes - Adv. Math. 2015

References: Besov class via heat semigroup on Dirichlet spaces

I: Sobolev type inequalities

arXiv:1811.04267

Il: BV functions and Gaussian heat kernel estimates arXiv:1811.11010

I1I: BV functions and sub-Gaussian heat kernel estimates arXiv:1903.10078
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Theorem. (Grigor'yan and Telcs, also [BBK])

On a MMD space the following are equivalent
e (VD), (EHI) and (RES)
e (VD), (EHI) and (ETE)
e (PHI)
e (HKE)
and the constants in each implication are effective.
Abbreviations: Metric Measure Dirichlet spaces, Volume Doubling, Elliptic

Harnack Inequality, Exit Time Estimates, Parabolic Harnack Inequality, Heat
Kernel Estimates.
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Theorem 1. Let (A, F), (B, F) be regular local conservative irreducible
Dirichlet forms on L2(F, m) and

14+ 6)A(u,u) < B(u,u) forallue F

where § > 0. Then (B—.A, F) is a regular local conservative irreducible
Dirichlet form on L2(F, m).

Technical lemma. If € is a local regular Dirichlet form with domain F, then

for any £ € F N L°°(F) we have I'(f, f)(A) =0, if A= {xe€F : f(x)=0}
where T(f, f) is the energy measure or the “square field operator”

/ gdT(f, f) = 2£(F, fg) — £(F*,g), & € F.
F

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester 19 / 34



Definition

Let (€, F) be a Dirichlet form on L?(F, ). We say that € is invariant with
respect to all the local symmetries of F (F-invariant or £ € €) if

o (1) If S € §,(F), then UsRsf € F for any f € F.

@ (2) Let n > 0 and S1, S» be any two elements of S,,, and let ® be any
isometry of RY which maps S; onto Sy. If f € F52, then fo & € FS
and ES1(f o &, f 0 ®) = £%(F, f) where

1
£5(g,g) = —;E(Usg, Usg)
F

and Dom(£%) = {g : g maps S to R, Usg € F}.
° (3) E(f,f) =Y ses.p) ES(Rsf,Rsf) for all f € F

Lemma

Let (A, fl), (B,fz) € & with F1 = F» and A Z B. Then
C=(1+496)A— B e €& foranyd > 0. Hence we can use the Hilbert projective

metric on &.

Sasha Teplyaev (UConn) 2025 * Rochester 20/ 34




1
of = — Z UsRsf.
ME ses.(F)

Note that @ is a projection operator because @ = @. It is bounded on C(F)
and is an orthogonal projection on L2(F, u).

Lemma

Assume that € is a local regular Dirichlet form on F, Ty is its semigroup, and
UsRsf € F whenever S € S,(F) and f € F. Then the following, for all
f,g € F, are equivalent:

(a): E(Ff,f)= > E°(Rsf,Rsf)
SES,(F)

(b): £(Of,g) = £(f, Og) (c): T.Of = OT.f

Sasha Teplyaev (UConn) Diffusions on singular spaces 2025 * Rochester
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The half-face Aj corresponds to a “slide move”,
and the half-face A} corresponds to a “corner move”,
analogues of the “corner” and “knight's” moves in [BB89].
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D. J. KELLEHER, H. PANZO, A. BRZOSKA AND A. TEPLYAEV

FIGURE 1. Barycentric subdivision of a 2-simplex, the graphs G{
GT and GT.

FIGURE 2. Adjacency (dual) graph G, in bold, and the barycen-
tric subdivision graph pictured together with the thin image of
ar.



BARLOW-BASS RESISTANCE ESTIMATES FOR HEXACARPET

FIGURE 3. On the left: the graph GT for barycentric subdivision
of a 2-simplex. On the right: the adjacency (dual) graph Gjy.




Theorem 1.1. The resistances across graphs GL and G (defined in Subsec-

tion 2.2) are reciprocals, that is RY = 1/R,,, and the asymptotic limits
1 1
log p* = lim —log R and logp = lim —log R,
n—oo N n—oo 1
exist (and p* = 1/p). Furthermore, 2/3 < pT < 4/5 and 5/4 < p < 3/2.
These estimates agree with the numerical experiments from [12], which suggest

that there exists a limiting Dirichlet form on these fractals and estimates p =
1.306, and hence p! ~ 0.7655.

Conjecture 1. In the case 5/4 < p < 3/2 (p =~ 1.306), we conjecture that the
recent results of A. Grigor’yan, J. Hu, K.-S. Lau and M. Yang in [2/-20, 28] can
imply existence of the Dirichlet form.

Conjecture 2. Since 2/3 < pT' < 4/5 < 5/4 < p < 3/2, we conjecture that
there is essentially no uniqueness of the Dirichlet forms, spectral dimensions,
resistance scaling factors etc for repeated barycentric subdivisions.



Diffusions on the pattern spaces of aperiodic Delone sets
(Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevino, T.)

A subset A C R? is a Delone set if it is uniformly discrete:

and relatively dense:

AR>0: ANBr(X) #2 VX € RY.

A Delone set has finite local complexity if VR > 03 finitely many clusters
Py, ..., P, such that for any X € R¥ there is an i such that the set Bg(X) N A

is translation-equivalent to P;. A Delone set A is aperiodic if A — £ = A implies
£=0. Itis repetitive if for any cluster P C A there exists Rp > 0 such that for
any X € R? the cluster Bg,(X) N A contains a cluster which is
translation-equivalent to P. These sets have applications in crystallography

(= 1920), coding theory, approximation algorithms, and the theory of
quasicrystals.
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Electron diffraction picture of a Zn-Mg-Ho quasicrystal

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some
twenty years later, they were found to apply to the study of natural quasicrystals
(1982 Dan Shechtman, 2011 Nobel Prize in Chemistry).
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pattern space of a Delone set

Let Ag C R be a Delone set. The pattern space (hull) of Ay is the closure of
the set of translates of Ag with respect to the metric g, i.e.

Q/\n = {(,DE'(/\()) H FE Rd}.

Definition

Let Ag C R9 be a Delone set and denote by ¢z (Ag) = Mg — £ its translation by
the vector £ € R?. For any two translates A; and Ay of Ag define o(A1, A;) =

inf{e >0: 35,f€ B.(0): Bi(0) N s(N1) = B1(0) N p(A2)} A 27172

4

Assumption

The action of R on Q is uniquely ergodic:
Q is a compact metric space with the unique R9-invariant probability measure .
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Topological solenoids
(similar topological features as the pattern space Q):

The harmonic measures of Lucy Garnett A.Candel, Adv. Math, 2003

Foliations, the ergodic theorem and Brownian motion L.Garnett, JFA 1983
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Theorem

D IfW = V_|7t >0 is the standard Gaussian Brownian motion on R?, then for
(i) >

any N € Q the process X} := e, (A) =N — W, is a conservative Feller
diffusion on (2, ).

(i) The semigroup P.f(N) = E[F(X])] is

self-adjoint on Li, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d.

(iii) The semigroup (P:):>0 does not admit heat kernels with
respect to pi. It does have Gaussian heat kernel with respect to the
not-o-finite (no Radon-Nykodim theorem) pushforward measure )\5

_ [ pre(t,hyt(N2))  if Ay € orb(Ay),
pa(t; A1, Az) = { 0 1 otherwise. (1)

(iv) There are no semi-bounded or L' harmonic functions
(Liouville-type).
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no classical inequalities

Useful versions of the Poincare, Nash, Sobolev, Harnack
inequalities DO NOT HOLD,

except in orbit-wise sense.
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spectral properties
Theorem

The unitary Koopman operators Uy on L?(R, u) defined by Uzf = f o o5
commute with the heat semigroup

U:P, = P,U;

hence commute with the Laplacian A, and all spectral operators, such as the
unitary Schrodinger semigroup.

... hence we may have continuous spectrum (no eigenvalues) under some
assumptions even though pu is a probability measure on the compact set €.

Under special conditions P; may be connected to the evolution of a Phason:
“Phason is a quasiparticle existing in quasicrystals due to their specific,
quasiperiodic lattice structure. Similar to phonon, phason is associated with
atomic motion. However, whereas phonons are related to translation of atoms,
phasons are associated with atomic rearrangements. As a result of these
rearrangements, waves, describing the position of atoms in crystal, change phase,
thus the term “phason” (from the wikipedia)".
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https://en.wikipedia.org/wiki/Phason

Phason evolution

Corollary

The unitary Koopman operators Uy on L?(, u1) defined by Uzf = f o o5
commute with the heat semigroup

Ui'Pt = Pt UE'

hence commute with the Laplacian A, and all spectral operators, including the
unitary Schrodinger semigroup e’At

Ui‘e'At — e,AtUE’

W

Recent physics work on phason ( “accounts for the freedom to choose the origin”):
Topological Properties of Quasiperiodic Tilings

(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans

Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
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_ THE PHASON — STRUCTURAL PHASE SCATTER

Another way to define a tiling is by using a characteristic function. We consider
the following choice [4, 5]:

X (n, ¢) = sign[cos (270 47" + ) — cos (7A7)]
with n = 0...Fy—1and [0,271] 3 ¢ — ¢y = 27Fy' €. The phase ¢—called a

phason—accounts for the freedom to choose the origin.
Let so (n) = x (n,0). Let T [sq (n)] = s (n + 1) be the translation operator. Define

To= ( T.T;.ﬂ ) = Iy (n, 0 =T [so(n)]

TN [s0]

Spectral prc

with scatter

The scatter
RN
T =Rel?



Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L?(R, 1, R') admits the orthogonal
decomposition
L2(Q, p, RY) = Im V @ R(dx). (2)

In other words, the L?-cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.

M. Hinz, M. Rockner, T., Vector analysis for Dirichlet forms and quasilinear PDE
and SPDE on fractals, Stoch. Proc. Appl. (2013). M. Hinz, T., Local Dirichlet
forms, Hodge theory, and the Navier-Stokes equation on topologically
one-dimensional fractals, Trans. Amer. Math. Soc. (2015, 2017).

Lorenzo Sadun. Topology of tiling spaces 2008.

Johannes Kellendonk, Daniel Lenz, Jean Savinien. Mathematics of
aperiodic order 2015.

Calvin Moore, Claude Schochet. Global analysis on foliated spaces 2006.
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end of the talk :-) UGUNN SIM NS s@r
Thank you!

Cornell Conferences on
Analysis, Probability, and Mathematical Physics
on Fractals
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