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Spectral asymptotlcs revisited, followmg Bob Strichartz




If {¢;}; is an orthonormal basis of eigenfunctions with eigenvalues {);}, then

Ka(x,y) =Y 9i()p(y), (1)

A<

is the kernel of the orthogonal projection of u € L?(Dy,  x, f1) onto the span of all
eigenfunctions with eigenvalues less than or equal to A.

Generally, define the kernel K (+,-) of the spectral projection operator Ey onto the
[0, A] portion of the spectrum:

Evu(x) = / Ka(x, y)uly) du(y) ®)

m.j,x

According to [Strichartz 2012], we define the spectral mass function

M(\) = lim (;k)/B Ka(x, x), dp(x), 3)

k—o0o L

if the limit exists over an increasing sequence of sets By. This is, in a sense, a
re-definition of the so called integrated density of states in physics.
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Setting for direct (inductive) and inverse (projective) limits

Let X be a topological space and let f: X — X be a continuous surjective map.

o Backward system: X Ixdxd .

o Forward system: X LIxLxL.o.

The aim is to record every backward orbit and every forward orbit inside suitable
limit spaces.
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Inverse limit (projective)

The inverse limit of the backward system is

im(X, £) = {(x0: X1, %2, ... ) € X | f(xa11) = x, for all n > 0}.

@ Subspace topology inherited from the product XV,
e Canonical projections m, ((xk)k>0) = Xn satisfy 7, = f 0 mpy1.
@ Universal among spaces Y with maps ¢,: Y — X such that ¢, = f o, 41.
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Direct limit (inductive)

Form the coproduct | |,-, X x {n} and impose the relation
(x,n) ~ (f(x),n+1) (x€X,n>0).

The direct limit is the quotient

im(X. 1) = (|| X x {n}) /~

n>0

@ Final topology: a set U is open when each inclusion j,: X — Ii_m)(X, f) has
open preimage.
@ Maps j, satisfy jpi10f = jp.

@ Universal among spaces receiving a family of maps ¢,: X — Y compatible
with f.
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Selected properties

° Ii<_m(X, f) records all backward orbits inside one compact space when X is
compact.

° Ii_m)(X, f) records forward orbits inside one connected space under mild
hypotheses.

@ When f is a covering map of degree greater than one, Ii<_m(X, f) can be
fractal in nature.
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Example: doubling map on the circle

Let X = S* and f(z) = z2. Then
o lim(S*, f) is the dyadic solenoid.

. 1 . .
° I|_m>(S ,f)is exercise ...

@ J. Munkres, Topology.
@ A. Hatcher, Algebraic Topology.

@ J. P. May and K. Ponto, More Concise Algebraic Topology.
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Dyadic solenoid (visualisation)
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Figure: A diamond fractal.




>

Figure: Schematic constructions of self-similar diamond fractals, D4 >, Ds 2, and
Ds 3, from top to bottom [Akkermans, Dunne, T., 2010]
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Spectral mass function, a.k.a. integrated density of states

Theorem (P. A-R., J. K., A. T., in progress)

The Spectral Mass M(X) on Dy,  « exists and is a pure-jump non-decreasing
function

Np,,.(N) = (b=1) > m'Np(A/j*) (4)

where m = jb and j is the length division parameter and b is the branching
parameter.
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Monotone limits of Dirichlet forms, with applications
(joint project with Patricia Alonso-Ruiz and Jun Kigami)

Separation property: For any x,y € X with x # y, there exists n > 1 such that
Tn(x) # Tn(y).

Monotonicity property: For any n > 1 and any u € F,41

[ powpdun< [ duna (5)
Xn Xn+1
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Theorem (P. A-R., J. K., A. T., in progress)

Assume the separation property and the monotonicity property (5). Then (&, F)
is a regular Dirichlet form on L2(X, ). Furthermore, let (.7-",,) |2 be the

L2(X, p)-closure of F, and let G,.1 be the L2(X, u)-orthogonal complement of

(Fn) o in (Fas1) 20 e

(Fot1) p = (Fn) 2 @ Gt (6)

where & means the L*(X, p)-orthogonal direct sum, and let Gy = (F1),,. Then

2 —
L(X.0) = ©0n ™

o
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Theorem (P. A-R., J. K., A. T., in progress)

Moreover, Let 1, : L?(X, ) — G, be the L?(X, j1)-orthogonal projection and let H
be the non-negative self-adjoint operator on L?(X, i) associated with the Dirichlet
form (£, F). Then there exists a non-negative self-adjoint operator H, on G, for
each n > 1 such that the following holds.

(a) If u € L2(X, ), then u € Dom(H) if and only if T,(u) € Dom (H,) for any
n>1andy, -, Hyy(u) converges in L*(X, ).

(b)
H= & Hy (8)
i.e, for any u € Dom(H),
Hu =" Hp (a(u)). 9)
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Spectrum and heat kernels on diamond fractals, a.k.a.
Laakso-type spaces

K K

Figure: Approximations of a not-self-similar diamond fractal with j; =3, = 2,
Jo =2, =3, j3 =2,n3 =3 [P. Alonso-Ruiz 2018, 2021]
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early history of fractals

@ in nature, fractals are everywhere
@ in mathematics and logic, the first mention of fractals is Zeno's Paradox
" Achilles and the tortoise” (c. 490-430 BC)
1 11
17 57 Za 57 oo

> this is a weakly self-similar set, a zero-dimensional fractal
e the Cantor set: Henry John Stephen Smith (1874) and Georg Cantor (1883)
log?2

0 < dimension =
log3

o the Koch snowflake (1906)

o Gaston Julia (1893 — 1978), Pierre Fatou (1878 — 1929) and Benoit
Mandelbrot (1924 — 2010)
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'

ANALYSE MATHE'VIA’I‘IQUE. — Sur une courbe dont tout poznz est un poznt
de ramification. Note (') de M. W. Sicreivski, présentée par M. Emile
Picard.

Le but de cetie Note est de donner un exemple d'une courbe canto-
rienne et jordanienne en méme temps, dont lout point est un point de
ramification. (Nous appelons point de ramification d’une courbe © un
point p de cette courbe, s'il existe trois continus, sous-ensembles de e,
ayant deux & deux le point p et seulement ce point commun.)

Soieat T un triangle régulierdonné; A, B, Crespectivement ses sommets :
gauche, supérieur et droit. En joignant les milieux descétés du triangle T,
nous obtenons quatre nouveaux triangles réguliers (/ig. 1), dont trois, T,
T,, T, contenant respectivement les sommets A, B, C, sont situés parallé-
lement & T et le quatriéme triangle U contient le cenire du triangle T3
nous exclurons tout ’intérieur du triangle U. _

Lessommets des triangles Ty, T, T, nousles désignerons respectivement :

(') Séance du 1o février 1915,



Lriangies U,, U,, U,, situés parallélement & U, dont les intérieurs seront

i .

exclus (/ig. 2). Avec chacun des triangles T, , procédons de méme et ainsi




Tig. 3.

d’eux se rencontrent quatre segments différents, situés entiérement sur
I’ensemble e.

Done, tous les points de la courbe €, sauf peut-élre les points A, B, C,
sont ses points de ramification.

Pour obtenir une courbe dont tous les points sans exception sont ses

Kig. 5. Fig. 6.

%

f
points de ramification, il suffit de diviser un hexagone régulier en six

triamalas ndemliane at danc rhann Alany incanira nna nanrha »




Newton's law of universal gravitation (April 1686)

Newton's laws of motion

This is a space—time relation.

Maxwell's equations (1861) lead to the Einstein's Theory of Relativity (1905)

E = mc?

Sasha Teplyaev (UConn) Spectral analysis on graphs and fractals « = July 11-12, 2022 5717



6/14/2014 Frangois Englert - Wikipedia, the free encyclopedia

Francois Englert

From Wikipedia, the free encyclopedia

Frangois Baron Englert (French: [dgle]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.l*] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007



Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?
Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.



al. / Metric space-time

F. Englert et
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al 3-fractal.

of a 2-dimension

Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — B/(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds - except at the origin ~ to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian

fixed geometries while E corresponds to the stable cuclidean fixed point. The unstable fixed points 05, 0, and 0; associated to 0-dimensional

geometries are located at the origin and at infinity on the (a., B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations arc drawn. Note that for one of
them the 10th point (e = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.



PRL 95, 171301 (2005)

PHYSICAL REVIEW LETTERS veek ending

21 OCTOBER 2005

The Spectral Dimension of the Universe is Scale Dependent

1. Ambjgrm, " . Juriewicz, " and R. Loll**

"The Niels Bokr Insite, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
Snstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI 10.1103/PhysRevLett93.171301

Quantum gravity as an ulfraviolet regulator!—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide  physical regulator for the ultraviolet
infiniies enconntered in nertirhative anantim field theory

PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
airements of the laroe-seale dimensinnality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Ds(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.

Random Geometry and Quantum Gravity

A thematic semestre at Institut Henri Poincaré

14 April, 2020 - 10 July, 2020

Organizers : John BARRETT, Nicolas CURIEN, Razvan GURAU,
Renate LOLL, Gregory MIERMONT, Adrian TANASA
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension dy and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
dy = d,d,, = 2, a semi-classical regime where ds = 2d/(2+d),d,, = 2+d, and the UV-fixed
4. On the length scales covered by three-dimensional

point regime where ds = d/2,d,,
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good
agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects



Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig

a classical regime where d; = d,d,, = 2, a semi-classical regime where ds = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered



Toy model: Hanoi towers game

W Tours de Hanoi — Wikipédia X + - O
< > C 0 & https:/fr.wikipedia.org/wiki/Tours_de Hanoi & % % B OY ()

&Non connecté Discussion Contributions Créer un compte Se connecte

Article  Discussion Lire Modifier Plus v ‘RechercherdansWiktpf (

\X/’II&PEDIA -
L’encyclopédie libre Tours de H anol

Aceuail o Pour les articles homonymes, voir Hanoi (homonymie).

Portails thématiques

Article au hasard S
Gerieet tour d'Hanoi") sont un jeu de réflexion

Les tours de Hanoi (originellement, la

imaginé par le mathématicien francais

COlbyet Edouard Lucas, et consistant & déplacer
Débuter sur Wikipédia des disques de diamétres différents d'une =
Aide Modele d'une tour de Hanoi (avec =

tour de « départ » a une tour d'« arrivée » P
Communauté huit disques).

o en passant par une tour « intermédiaire »
Modifications récentes i P !

The puzzle was invented by the French mathematician Edouard Lucas in 1883.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups
Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Texas AEM University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +-+-+-+-+

Presented by Etienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H*®) et le
graphe de Schreier de H®) au niveau 3






Initial physics motivation

@ R. Rammal and G. Toulouse, Random walks on fractal structures and
percolation clusters. J. Physique Letters 44 (1983)

@ R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45
(1984)

e E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the
Schrédinger equation on some fractal lattices. Phys. Rev. B (3) 28 (1984)

@ Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I.

Quasilinear lattices. 1. Sierpiniski gaskets. Ill. Infinitely ramified lattices. J.
Phys. A 16 (1983)17 (1984)
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Main early mathematical results

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation theory
and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984-1985),
IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker, which at
time n is at X(n), on certain ‘fractal lattices’. For the ‘Sierpiriski lattice’ in
dimension d we show that, as L — oo, the process Y;(t) = X([(d + 3)tt])/2t
converges in distribution to a diffusion on the Sierpin’ski gasket, a Cantor set of
Lebesgue measure zero. The analysis is based on a simple ‘renormalization group’
type argument, involving self-similarity and ‘decimation invariance'. In particular,

X (n)| ~ n7,
where v = (In2)/In(d + 3)) < 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods in
mathematical physics (Katata/Kyoto, 1985), 1987.
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Main classes of fractals considered

e [0,1]
Sierpinski gasket
nested fractals

°
°

@ p.c.f. self-similar sets, possibly with various symmetries

o finitely ramified self-similar sets, possibly with various symmetries
°

infinitely ramified self-similar sets, with local symmetries, and with heat
kernel estimates (such as the Generalized Sierpiniski carpets)

@ metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)
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Figure: Sierpiriski gasket and Lindstrgm snowflake (nested fractals), p.c.f., finitely
ramified)
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Figure: Diamond fractals, non-p.c.f., but finitely ramified
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Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified
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Figure: Sierpiriski carpet, infinitely ramified
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Existence, uniqueness, heat kernel estimates:
geometric renormalization for F-invariant Dirichlet forms

Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920"), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, Ito ...

distance ~ V' time

“Einstein space—time relation for Brownian motion”

Wiener process in R" satisfies %IE|Wt|2 =t and has a
Gaussian transition density:

1 Ix — y|?
Pt(XaY)—WeXP T ar

Sasha Teplyaev (UConn) Spectral analysis on graphs and fractals « = July 11-12, 2022 10 /17



e De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

o Li-Yau (1986) type estimates on a geodesically complete Riemannian
manifold with Ricci > 0:

% 2
pt(x,y) ~ x; exp (—cd(’y)>

distance ~ V time
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Gaussian:

1 Ix — y|?
pe(x,y) = WGXP _4—t

Li-Yau Gaussian-type:

1 d(x,y)?
pe(x,y) ~ Vi VD) exp (—cf>

Sub-Gaussian:

_1
d(x,y)dw>

1
pe(x,y) ~ mexp —C ( t

distance ~ (time) a
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Thank you for your attention!
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