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Spectral asymptotics revisited, following Bob Strichartz

Figure: AMS Special Session on Analysis, Probability and Mathematical Physics

on Fractals, Syracuse NY, October 2-3, 2010.

Sasha Teplyaev (UConn) projective limits and asymptotics, revisited June 2025 ∗ Cornell 3 / 18



If {φj}j is an orthonormal basis of eigenfunctions with eigenvalues {λj}, then

Kλ(x , y) =
∑

λj⩽λ

φj(x)φj(y), (1)

is the kernel of the orthogonal projection of u ∈ L2(Dm,j,x , µ) onto the span of all
eigenfunctions with eigenvalues less than or equal to λ.
Generally, define the kernel Kλ(·, ·) of the spectral projection operator Eλ onto the
[0, λ] portion of the spectrum:

Eλu(x) :=

∫

Dm,j,x

Kλ(x , y)u(y) dµ(y) (2)

According to [Strichartz 2012], we define the spectral mass function

M(λ) := lim
k→∞

1

µ(Bk)

∫

Bk

Kλ(x , x), dµ(x), (3)

if the limit exists over an increasing sequence of sets Bk . This is, in a sense, a
re-definition of the so called integrated density of states in physics.
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Setting for direct (inductive) and inverse (projective) limits

Let X be a topological space and let f : X → X be a continuous surjective map.

Backward system: X
f←− X

f←− X
f←− . . .

Forward system: X
f−→ X

f−→ X
f−→ . . .

The aim is to record every backward orbit and every forward orbit inside suitable
limit spaces.
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Inverse limit (projective)

The inverse limit of the backward system is

lim←−(X , f ) =
{
(x0, x1, x2, . . . ) ∈ XN | f (xn+1) = xn for all n ≥ 0

}
.

Subspace topology inherited from the product XN.

Canonical projections πn
(
(xk)k≥0

)
= xn satisfy πn = f ◦ πn+1.

Universal among spaces Y with maps ψn : Y → X such that ψn = f ◦ ψn+1.
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Direct limit (inductive)

Form the coproduct
⊔

n≥0 X × {n} and impose the relation

(x , n) ∼
(
f (x), n + 1

)
(x ∈ X , n ≥ 0).

The direct limit is the quotient

lim−→(X , f ) =
(⊔

n≥0

X × {n}
) /
∼ .

Final topology: a set U is open when each inclusion jn : X → lim−→(X , f ) has
open preimage.

Maps jn satisfy jn+1 ◦ f = jn.

Universal among spaces receiving a family of maps φn : X → Y compatible
with f .
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Selected properties

lim←−(X , f ) records all backward orbits inside one compact space when X is
compact.

lim−→(X , f ) records forward orbits inside one connected space under mild
hypotheses.

When f is a covering map of degree greater than one, lim←−(X , f ) can be
fractal in nature.
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Example: doubling map on the circle

Let X = S1 and f (z) = z2. Then

lim←−(S
1, f ) is the dyadic solenoid.

lim−→(S1, f ) is exercise ...

J. Munkres, Topology.

A. Hatcher, Algebraic Topology.

J. P. May and K. Ponto, More Concise Algebraic Topology.
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Dyadic solenoid (visualisation)
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Figure: A diamond fractal.
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Figure: Schematic constructions of self-similar diamond fractals, D4,2, D6,2, and

D6,3, from top to bottom [Akkermans, Dunne, T., 2010]
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Spectral mass function, a.k.a. integrated density of states

Theorem (P. A.-R., J. K., A. T., in progress)

The Spectral Mass M(λ) on Dm,j,x exists and is a pure-jump non-decreasing
function

NDm,j,x (λ) = (b − 1)
∞∑

l=−∞

mlND(λ/j
2l) (4)

where m = jb and j is the length division parameter and b is the branching
parameter.
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Monotone limits of Dirichlet forms, with applications
(joint project with Patricia Alonso-Ruiz and Jun Kigami)

Separation property: For any x , y ∈ X with x ̸= y , there exists n ≥ 1 such that
πn(x) ̸= πn(y).
Monotonicity property: For any n ≥ 1 and any u ∈ Fn+1

∫

Xn

pn(u)
2dµn ≤

∫

Xn+1

u2dµn+1. (5)
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Theorem (P. A.-R., J. K., A. T., in progress)

Assume the separation property and the monotonicity property (5). Then (E ,F)
is a regular Dirichlet form on L2(X , µ). Furthermore, let

(
Fn

)
L2 be the

L2(X , µ)-closure of Fn and let Gn+1 be the L2(X , µ)-orthogonal complement of(
Fn

)
L2 in

(
Fn+1

)
L2 , i.e.

(
Fn+1

)
L2 =

(
Fn

)
L2 ⊕ Gn+1 (6)

where ⊕ means the L2(X , µ)-orthogonal direct sum, and let G1 =
(
F1

)
L2 . Then

L2(X , µ) = ⊕
n≥1
Gn (7)
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Theorem (P. A.-R., J. K., A. T., in progress)

Moreover, Let τn : L2(X , µ)→ Gn be the L2(X , µ)-orthogonal projection and let H
be the non-negative self-adjoint operator on L2(X , µ) associated with the Dirichlet
form (E ,F). Then there exists a non-negative self-adjoint operator Hn on Gn for
each n ≥ 1 such that the following holds.

(a) If u ∈ L2(X , µ), then u ∈ Dom(H) if and only if τn(u) ∈ Dom (Hn) for any
n ≥ 1 and

∑
n≥1 Hnτn(u) converges in L2(X , µ).

(b)
H = ⊕

n≥1
Hn (8)

i.e, for any u ∈ Dom(H),

Hu =
∑

n≥1

Hn (τn(u)) . (9)
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Spectrum and heat kernels on diamond fractals, a.k.a.
Laakso-type spaces

Figure: Approximations of a not-self-similar diamond fractal with j1 = 3, n1 = 2,

j2 = 2, n2 = 3, j3 = 2, n3 = 3 [P. Alonso-Ruiz 2018, 2021]
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early history of fractals

in nature, fractals are everywhere

in mathematics and logic, the first mention of fractals is Zeno’s Paradox
”Achilles and the tortoise” (c. 490–430 BC)

1,
1

2
,

1

4
,

1

8
, ...

I this is a weakly self-similar set, a zero-dimensional fractal

the Cantor set: Henry John Stephen Smith (1874) and Georg Cantor (1883)

0 < dimension =
log2

log3
< 1

the Koch snowflake (1906)

Gaston Julia (1893 – 1978), Pierre Fatou (1878 – 1929) and Benoit
Mandelbrot (1924 – 2010)
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Newton’s law of universal gravitation (April 1686)

F = G
m1m2

r2

Newton’s laws of motion
F = ma

This is a space–time relation.
...
Maxwell’s equations (1861) lead to the Einstein’s Theory of Relativity (1905)

E = mc2

Sasha Teplyaev (UConn) Spectral analysis on graphs and fractals July 11-12, 2022 5 / 17



6/14/2014 François Englert - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Fran%C3%A7ois_Englert 1/5

François Englert

François Englert in Israel, 2007

Born 6 November 1932 

Etterbeek, Brussels, Belgium[1]

Nationality Belgian

Fields Theoretical physics

Institutions Université Libre de Bruxelles

Tel Aviv University[2][3]

Alma mater Université Libre de Bruxelles

Notable awards Francqui Prize (1982)

Wolf Prize in Physics (2004)

Sakurai Prize (2010)

Nobel Prize in Physics (2013)

François Englert
From Wikipedia, the free encyclopedia

François Baron Englert (French: [ɑɡ̃lɛʁ]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,
C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,
together with Peter Higgs and the CERN.

Englert was awarded the 2013 Nobel Prize in Physics,
together with Peter Higgs for the discovery of the Higgs

mechanism.[5]
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METRIC SPACE-TIME AS FIXED POINT 

OF THE RENORMALIZATION GROUP EQUATIONS 

ON FRACTAL STRUCTURES 

F. ENGLERT, J.-M. FRI~RE x and M. ROOMAN 2 

Physique Thkorique, C.P. 225, Universitb Libre de Bruxelles, 1050 Brussels, Belgium 

Ph. SPINDEL 

Facultb des Sciences, Universitb de l'Etat it Mons, 7000 Mons, Belgium 

Received 19 February 1986 

We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 

0619-6823/87/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = /3/(,8 + 1) separates the domain of euclidean 
metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation



The Spectral Dimension of the Universe is Scale Dependent

J. Ambjørn,1,3,* J. Jurkiewicz,2,† and R. Loll3,‡

1The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
2Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,

Reymonta 4, PL 30-059 Krakow, Poland
3Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands

(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the
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�2
d logP���
d log�

� a�
b

�� c
(10)

agrees best with the data. In Fig. 1, the curve

DS��� � 4:02�
119

54� �
(11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range � 2
�40; 400�. Although both b and c individually are slightly
altered when one varies the range of �, their ratio b=c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

P��� �
1

�a=2�1� c=��b=2c
; (12)

implying a behavior

P��� �
�
��a=2 for large �;
���a�b=c�=2 for small �:

(13)

Our interpretation of Eqs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a�
b=c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts ��min; �max� for the range of �, as well
as different weightings of the errors, we obtain the asymp-
totic value

DS�� � 1� � 4:02 0:1; (14)

which means that the spectral dimension extracted from
the large-� behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the ‘‘short-distance spectral dimension,’’ ob-
tained by extrapolating Eq. (12) to �! 0 is given by

DS�� � 0� � 1:80 0:25; (15)

and thus is compatible with the integer value two.
Discussion.—The continuous change of spectral dimen-

sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘‘dimensional transmutation’’ to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since � from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling GN , it
is tempting to write the continuum version of (10) as

PV��� �
1

�2

1

1� const:�GN=�
; (16)

where const. is a constant of order one. Using the same
naı̈ve dimensional transmutation, one finds that our ‘‘uni-
verse’’ of 181.000 discrete building blocks has a spacetime
volume of the order of �20lPl�

4 in terms of the Planck
length lPl, and that the diffusion with � � 400 steps cor-
responds to a linear diffusion depth of 20lPl, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.
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Fractal space-times under the microscope:

a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
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Staudingerweg 7, D-55099 Mainz, Germany
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Abstract: The emergence of fractal features in the microscopic structure of space-time

is a common theme in many approaches to quantum gravity. In this work we carry out a

detailed renormalization group study of the spectral dimension ds and walk dimension dw
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
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Toy model: Hanoi towers game

The puzzle was invented by the French mathematician Édouard Lucas in 1883.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups
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Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier

graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since

they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite

this article: R. Grigorchuk, Z. Šuniḱ, C. R. Acad. Sci. Paris, Ser. I 344 (2006).
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Initial physics motivation

R. Rammal and G. Toulouse, Random walks on fractal structures and
percolation clusters. J. Physique Letters 44 (1983)

R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45
(1984)

E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the
Schrödinger equation on some fractal lattices. Phys. Rev. B (3) 28 (1984)

Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I.
Quasilinear lattices. II. Sierpiński gaskets. III. Infinitely ramified lattices. J.
Phys. A 16 (1983)17 (1984)
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Main early mathematical results

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation theory
and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984–1985),
IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker, which at
time n is at X (n), on certain ‘fractal lattices’. For the ‘Sierpiński lattice’ in
dimension d we show that, as L→∞, the process YL(t) ≡ X ([(d + 3)Lt])/2L

converges in distribution to a diffusion on the Sierpin’ski gasket, a Cantor set of
Lebesgue measure zero. The analysis is based on a simple ‘renormalization group’
type argument, involving self-similarity and ‘decimation invariance’. In particular,

|X (n)| ∼ nγ ,

where γ = (ln 2)/ ln(d + 3)) 6 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods in
mathematical physics (Katata/Kyoto, 1985), 1987.
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Main classes of fractals considered

[0, 1]

Sierpiński gasket

nested fractals

p.c.f. self-similar sets, possibly with various symmetries

finitely ramified self-similar sets, possibly with various symmetries

infinitely ramified self-similar sets, with local symmetries, and with heat
kernel estimates (such as the Generalized Sierpiński carpets)

metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)
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Figure: Sierpiński gasket and Lindstrøm snowflake (nested fractals), p.c.f., finitely

ramified)
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Figure: Diamond fractals, non-p.c.f., but finitely ramified
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Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified
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Figure: Sierpiński carpet, infinitely ramified
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Existence, uniqueness, heat kernel estimates:
geometric renormalization for F -invariant Dirichlet forms

Brownian motion:
Thiele (1880), Bachelier (1900)
Einstein (1905), Smoluchowski (1906)
Wiener (1920’), Doob, Feller, Levy, Kolmogorov (1930’),
Doeblin, Dynkin, Hunt, Ito ...

distance ∼
√

time

“Einstein space–time relation for Brownian motion”

Wiener process in Rn satisfies 1
nE|Wt |2 = t and has a

Gaussian transition density:

pt(x, y) =
1

(4πt)n/2
exp

(
−|x − y |2

4t

)
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De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

Li-Yau (1986) type estimates on a geodesically complete Riemannian
manifold with Ricci > 0:

pt(x, y) ∼ 1

V (x,
√

t)
exp

(
−c

d(x, y)2

t

)

distance ∼
√

time
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Gaussian:

pt(x, y) =
1

(4πt)n/2
exp

(
−|x − y |2

4t

)

Li-Yau Gaussian-type:

pt(x, y) ∼ 1

V (x,
√

t)
exp

(
−c

d(x, y)2

t

)

Sub-Gaussian:

pt(x, y) ∼ 1

tdH/dw
exp


−c

(
d(x, y)dw

t

) 1
dw−1




distance ∼ (time)
1

dw
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Thank you for your attention!
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