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Abstract

We show that an idea, originating initially with a fundamental
recursive iteration scheme (usually referred as “the” Kaczmarz
algorithm), admits important applications in such
infinite-dimensional, and non-commutative, settings as are
central to spectral theory of operators in Hilbert space, to
optimization, to large sparse systems, to iterated function
systems (IFS), and to fractal harmonic analysis. We present a
new recursive iteration scheme involving as input a prescribed
sequence of selfadjoint projections. Applications include random
Kaczmarz recursions, their limits, and their error-estimates.



1. Introduction



Outline

I A formulation of the classical infinite-dimensional
Kaczmarz algorithmit in terms of sequences of projections
in a Hilbert space H .

I Explicit and algorithmic criteria for convergence of certain
infinite products of projections in H .

I A random Kaczmarz algorithm.
I Applications to stochastic analysis, and to

frame-approximation questions in the Hilbert space L2 (µ),
where µ is in a class of iterated function system (IFS)
measures.



Slice-singular measures

Consider a choice of period interval, [0, 1], or [−π, π], a positive
finite measure µ with support in the chosen period interval; and
the usual Fourier frequencies realized as complex exponentials
en, n ∈ Z. Set N0 = {0} ∪ N.

Theorem 1 (F&M Riesz). The subset {en | n ∈ N0} is total in
L2 (µ) if and only if µ is singular with respect to Lebesgue
measure.

Question. What is a natural extension of F&M Riesz’ theorem
to higher dimensions, modeling the above formulation? (One of
the motivations for this is a certain construction of frame
algorithms in L2 (µ); in the form started for d = 1 in
[DJ07, HJW19, HJW18a, HJW18b].)



Definition 2. A Borel measure µ on J2 := [0, 1]× [0, 1] is called
slice singular iff (Def.)
1. ξ = µ ◦ π−1

1 is singular, where π1 is the projection onto the
first coordinate; and

2. for a.a. x w.r.t. ξ, the measure σx (·) is singular.
“Singular” is defined relative to Lebesgue measure.



Theorem 3. If µ is slice singular on J2, then {en}n∈N2
0
has

dense span in L2 (µ), where en (x) = ei2π(n1x1+n2x2), for all
n = (n1, n2) ∈ N2

0, and x = (x1, x2) ∈ J2.



Example 4 (d = 2). µ ∈M+
(
T2
)
, W = Sierpinski gasket.

Note that, for a.a. x w.r.t. ξ, the measure σx on
A (x) = {y | (x, y) ∈W} is a fractal measure with variable gap
size, for a.a. x, σx (dy) is singular relative to the Lebesgue
measure. Hence we can apply F&M Riesz.
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(A) Sierpinski gasket (B) Sierpinski carpet

Figure 1: Examples of slice singular measures.



I While the question of deciding which measures with
support in Rd, d > 1, are slice singular is quite natural in
the present context, very little seems to be known about
clean answers: i.e., deciding which measures (in higher
dimension) have the property, and which do not. Even
when one specializes to the case of standard planar IFS
measures with gaps, there seems to be no easy approach to
deciding the question; slice singular or not. Hence, at the
present stage, the best approach seems to be a case by case
study.



2. Frames, projections, and Kaczmarz
algorithms



Classical Kaczmarz algorithm

I An iterative method for solving systems of linear equations,
for example, Ax = b, where A is an m× n matrix.

I Let x0 be an arbitrary vector in Rn, and set

xk := argmin 〈aj ,x〉=bj ‖x− xk−1‖2 , k ∈ N. (1)

I At each iteration, the minimizer is given by

xk = xk−1 +
bj − 〈aj , xk−1〉
‖aj‖2

aj . (2)
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(A) Approximate solution;
random starting point x0

(B) orthogonality relation
‖xk−1 − x‖2 =
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Figure 2: Solution to Ax = b by the Kaczmarz algorithm.



Theorem 5. Let {Pj}j∈N0
be a system of selfadjoint projections

in a Hilbert space H . For all n ∈ N0, set

Tn = (1− Pn) (1− Pn−1) · · · (1− P0) , and (3)
Qn = Pn (1− Pn−1) · · · (1− P0) , Q0 = P0. (4)

Then,

1− T ∗nTn =

n∑
j=0

Q∗jQj , and (5)

1− Tn =

n∑
j=0

Qj . (6)



Corollary 6. The following are equivalent:

1. 1 =
∑

j∈N0
Q∗jQj in the weak operator topology.

2. 1 =
∑

j∈N0
Qj in the strong operator topology.

3. Tn → 0 in the strong operator topology.

Remark 7. Under suitable conditions on Qn one can show that
the convergence in part (1) of the corollary also holds in the
strong operator topology. (See [JST20].)



Definition 8. The system {Pj}j∈N0
is called effective if Tn → 0

in the strong operator topology.

Corollary 9. Suppose the system {Pj}j∈N0
is effective. Then,

for all x ∈H ,
x =

∑
j∈N0

Qjx. (7)

Moreover, for all x, y ∈H ,

〈x, y〉 =
∑
j∈N0

〈Qjx,Qjy〉 ; (8)

and in particular,

‖x‖2 =
∑
j∈N0

‖Qjx‖2 . (9)



The case of rank-1 projections

I Let {Pj}j∈N0
be a system of rank-1 projections, i.e.,

Pj = |ej 〉〈 ej |

where {ej}j∈N0
is a set of unit vectors in H .

I It follows that every Qj is a rank-1 operator with range in
span {ej}. Thus there exists a unique gj ∈H such that

Qj = |ej 〉〈 gj | , j ∈ N0. (10)



Lemma 10. Given {Pj}j∈N0
a sequence of s.a. projections in

H ; set
Qn := PnP

⊥
n−1 · · ·P⊥1 P⊥0 , (11)

where P⊥j := 1− Pj ; then

Qn = Pn

(
1−

∑n−1

j=0
Qj

)
. (12)

Corollary 11. The vectors {gj} in (10) are determined
recursively by

g0 = e0 (13)

gn = en −
n−1∑
j=0

〈ej , en〉 gj . (14)



Corollary 12. Assume {|ej 〉〈 ej |}j∈N0
is effective, and let

Qj = |ej 〉〈 gj | be as above. Then, for all x ∈H , we have

x =
∑
j∈N0

〈gj , x〉 ej . (15)

In particular, for all A ∈ B (H ), then

Ax =
∑
j∈N0

〈A∗gj , x〉 ej . (16)

Moreover, for all x, y ∈H ,

〈x, y〉 =
∑
j∈N0

〈x, gj〉 〈gj , y〉 , and

‖x‖2 =
∑
j∈N0

|〈gj , x〉|2 .



Corollary 13. The system {|ej 〉〈 ej |}j∈N0
is effective iff {gj}j∈N0

is a Parseval frame in H .

Remark 14. We note that when µ is slice singular, then the
Fourier frequencies {en}n∈N0

is effective in L2 (µ), and every
f ∈ L2 (µ) has Fourier series expansion.



Random Kaczmarz constructions

I We say ξ : Ω→ B (H ) is a random variable iff (Def.) for
all pairs of vectors x, y ∈H , then the functions

Ω −→ C, ω 7−→ 〈x, ξ (ω) y〉H (17)

are measurable w.r.t. the standard Borel σ-algebra BC of
subsets of C.

I Given a probability space (Ω,F ,P) we shall denote the
corresponding expectation E, i.e.,

E (· · · ) Def.
=

∫
Ω

(· · · ) dP. (18)



I Let H be a Hilbert space. Given a family of selfadjoint
projections {Pj}j∈N0

in H , let ξ : Ω→ B (H ) be a
random variable, such that

P (ξ = Pj) = pj , j ∈ N0, (19)

where pj > 0, and
∑

j∈N0
pj = 1.

I Suppose further that there exists a constant C, 0 < C < 1,
such that

E
[
‖ξx‖2

]
:=
∑

j∈N0

pj ‖Pjx‖2 ≥ C ‖x‖2 , ∀x ∈H . (20)



Theorem 15. Let {ξj}j∈N0
be an i.i.d. realization of ξ from

(19). Fix ξ0 = P0, and set

Tn = (1− ξn) (1− ξn−1) · · · (1− ξ0) , and (21)
Qn = ξn (1− ξn−1) · · · (1− ξ0) , Q0 = ξ0. (22)

Note that each product in (21) and (22) is an operator-valued
random variable.
Then, for all x ∈H , we have:

lim
n→∞

E
[
‖Tnx‖2

]
= 0. (23)



Corollary 16. Let Tn and Qn be as in (21)–(22), then the
following hold.
1. For all x ∈H ,

lim
n→∞

E
[∥∥∥x−∑n

j=0
Qjx

∥∥∥2
]

= 0. (24)

2. For all x, y ∈H ,

lim
n→∞

E
[∣∣∣〈x, y〉 −∑n

j=0

〈
x,Q∗jQjy

〉∣∣∣2] = 0. (25)



Remark 17 (Fusion frames, and measure frames). Our
present equation (20) may be viewed as an instance of what is
now called fusion frames, and developed extensively by Casazza
et al. and by others. In addition, we note that our present
result (25) is closely related to a formulation of a certain notion
of measure frames.



Theorem 18. Let the setting be as above, but assume
ξ : Ω→ B (H ) is a random positive contraction; i.e.,
P (ξ = Pj) = pj , where

0 ≤ Pj ≤ 1, j ∈ N0.

Then, the conclusions in Theorem 15 and Corollary 16 hold.



3. System of isometries



Lemma 19. Fix d > 1, and let Dd be the polydisk. Let H2

(
Dd
)

be the corresponding Hardy space. Let µ be a Borel probability
measure on Td ' [0, 1]d. Then there is a bijective
correspondence between:

1. isometries V : L2 (µ)→ H2

(
Dd
)
; and

2. Parseval frames {gn} in L2 (µ).
The correspondence is as follows:
(1)→(2). Given V , isometric; set gn := V ∗ (zn), where n ∈ Nd0.
(2)→(1). Given {gn} a fixed Parseval frame in L2 (µ), set

(V f) (z) =
∑
n∈Nd0

〈gn, f〉L2(µ) z
n, z ∈ Dd.



Definition 20. Fix d > 1. For all x ∈ Td, and all z ∈ Dd, let

K∗ (z, x) =

d∏
j=1

1

1− zje (xj)
. (26)

Let µ ∈M
(
Td
)
, and set

(Cµf) (z) =

∫
Td
f (x)K∗ (z, x) dµ (x) (27)

=
∑
n∈Nd

f̂dµ (n) zn.



I In particular,

(Cµ1) (z) =
∑
n∈Nd0

µ̂ (n) zn, (28)

where µ̂ (n) =
∫
Td en (x)dµ (x), n ∈ Nd0.

I Let L2 (µ)
(
= L2

(
T2, µ

))
be as above, where µ ∈M+

(
T2
)
,

ξ = µ ◦ π−1
1 , and µ assumes a disintegration

dµ =

∫
σx (dy) dξ (x)



Theorem 21 (see e.g., [Sar94, BS13]). Assume µ is slice
singular. There are then two associated isometries:

L2 (ξ)
Vξ−−→ H2 (D) , (Vξf) (z) =

(Cξf) (z)

(Cξ1) (z)
, (29)

and

L2 (σx)
Vσx−−−→ H2 (D) , (Vσxf) (z) =

(Cσxf) (z)

(Cσx1) (z)
. (30)



Corollary 22. The mapping

Vµ : L2 (µ) −→ H2

(
D2
)

(= H2 (D)⊗H2 (D))

given by

(VµF ) (z1, z2) = Vξ
((
Vσx(·)F (x, ·)

)
(z2)

)
(z1) (31)

is isometric. It follows that
{
gn := V ∗µ (zn)

}
n∈N2

0
is a Parseval

frame in L2 (µ).



Remark 23. From the above discussion, we see that if
V : L2 (µ)→ H2

(
D2
)
is an isometry, then {gn := V ∗ (zn)}n∈N2

0

is a Parseval frame in L2 (µ). This implication holds in general.
Since there are “many” such isometries, it follows that there are
“many” Parseval frames. For more details, see
[HJW19, HJW18a, HJW18b] and the reference therein.



4. General iterated function system (IFS)-theory



I Let (M,d) be a complete metric space. Fix an alphabet
B = {b1, · · · , bN}, N ≥ 2, and let {τb}b∈B be a contractive
IFS with attractor W ⊂M , i.e.,

W =
⋃
b

τb (W ) . (32)

In fact, W is uniquely determined by (32).
I Let {pb}b∈B, pb > 0,

∑
b∈B pb = 1, be fixed. Set Ω = BN,

equipped with the product topology. Let

P = "∞1 p = p× p× p · · · · · ·︸ ︷︷ ︸
ℵ0 product measure

(33)

be the infinite-product measure on Ω (see [Kak43, Hid80]).



I We construct a random variable X : Ω→M with value in
M (a measure space (M,BM )), such that the distribution
µ := P ◦X−1 is a Borel probability measure supported on
W , satisfying

µ =
∑
b∈B

pb µ ◦ τ−1
b . (34)

That is, µ is the IFS measure.



Theorem 24. For points ω = (bi1 , bi2 , bi3 , · · · ) ∈ Ω and k ∈ N,
set

ω
∣∣
k

= (bi1 , bi2 , · · · , bik) , and (35)

τω|k = τbik ◦ · · · ◦ τbi2 ◦ τbi1 . (36)

Then
⋂∞
k=1 τω|k(M) is a singleton, say {x (ω)}. Set

X (ω) = x (ω), i.e.,

{X (ω)} =

∞⋂
k=1

τω|k (M) ; (37)

then:



I X : Ω→M is an (M,d)-valued random variable.

I The distribution of X, i.e., the measure

µ = P ◦X−1 (38)

is the unique Borel probability measure on (M,d)
satisfying:

µ =
∑
b∈B

pb µ ◦ τ−1
b ; (39)

equivalently, ∫
M
fdµ =

∑
b∈B

pb

∫
M

(f ◦ τb) dµ, (40)

holds for all Borel functions f on M .



I The support Wµ = supp (µ) is the minimal closed set (IFS),
6= ∅, satisfying

Wµ =
⋃
b∈B

τb (Wµ) . (41)



In general, the random variable X : Ω→W (see (37)) is not
1-1, but it is always onto. It is 1-1 when the IFS is non-overlap;
see Definition 25 below.

Definition 25. We say that (τb,W ) is “non-overlap” iff for all
b, b′ ∈ B, with b 6= b′, we have τb (W ) ∩ τb′ (W ) = ∅.

Corollary 26. Assume p 6= p′, i.e., pb 6= p′b, for some b ∈ B.
(Recall that

∑
b∈B pb =

∑
b∈B p

′
b = 1, pb, p′b > 0.) Let P = "∞1 p,

and P′ = "∞1 p
′ be the corresponding infinite product measures;

and let µ = P ◦X−1, µ′ = P′ ◦X−1 be the respective
distributions. Then µ and µ′ are mutually singular.



5. Sierpinski and random power series



I Given a system of contractive mappings, affine or
conformal, there are then two associated fixed-point
problems, one for compact sets, and the other for
probability measures: The case of the sets W is discussed in
(41), and the measures µ in (39). For a fixed IFS, the set in
question arises as the support of an associated IFS-measure
µ.

I Probabilistic features of these constructions are outlined. In
particular, we show that these planar Sierpinski measures µ
are slice-singular.



I Given a probability measure µ on Id where I = [0, 1], a key
property that µ may, or may not, have is that the Fourier
frequencies {en}n∈Nd are total in L2 (µ), i.e., that the closed
span of {en}n∈Nd is L2 (µ).

I The result in d = 1, that, if ν on I is singular, then the set
{en}n∈N0

is total in L2 (ν), fails for d = 2. There are
examples when µ on I2 is positive, singular w.r.t. the 2D
Lebesgue measure, but {en}n∈N2

0
is not total in L2 (µ).



Example 27. Take µ = λ1 × ν (see Figure 3), where λ1 is
Lebesgue measure and ν is a singular measure in I, then
{en}n∈N2

0
is not total in L2 (µ).

Figure 3: λ1 = Lebesgue, ν ⊥ λ1



For the Sierpinski case (affine IFS), with the Sierpinski measure
µ, we shall show below that {en}n∈N2

0
is indeed total in L2 (µ).

Let the alphabets be

B = {b0, b1, b2} :=

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}
. (42)

Set

M =

[
2 0
0 2

]
, and τj (x) = M−1 (x+ bj) . (43)

The Sierpinski gasket (Figure 4) is the IFS attractor W
satisfying

W =

2⋃
j=0

τj (W ) .



Figure 4: Construction of the Sierpinski gasket.



We have the random variable BN X−−→W , given by

ω = (bi1 , bi2 , bi3 , · · · ) 7−→ x =

∞∑
k=1

M−kbik . (44)

As a Cantor set, W (the Sierpinski gasket) is the boundary of
the tree symbol representation; see Figure 5.

ϕ

0 1 2

(00) (01) (02) (10) (11) (12) (20) (21) (22)

000 001 002 010 011 012 020 021 022

Figure 5: Symbol representations of infinite words.



I Recall that every ω ∈ BN is an infinite word
ω = (bi1 , bi2 , bi3 , · · · ), with ik ∈ {0, 1, 2}. Setting
ω
∣∣
n

= (bi1 , · · · , bin), a finite truncated word, and
τω|n = τin ◦ · · · ◦ τi1 ; then

⋂
n τω|n (W ) = {x}, i.e., the

intersection is a singleton. We set X (ω) = x.
I Let p be the probability distribution on B, where

p =

(
1

3
,
1

3
,
1

3

)
. (45)

Let P = "∞1 p, and µ = P ◦X−1 be the corresponding IFS
measure, i.e., µ is the unique Borel probability measure on
W , s.t.

dµ =
1

3

2∑
j=0

µ ◦ τ−1
j . (46)



Lemma 28. Let W be the Sierpinski gasket, and µ be the
corresponding IFS measure. Let µ̂ be the Fourier transform of
µ, i.e., µ̂ (λ) :=

∫
W ei2πλ·xdµ (x). Then

µ̂ (λ) =
1

3

[
1 + eiπλ1 + eiπλ2

]
µ̂ (λ/2) , (47)

where λ = (λ1, λ2) ∈ R2.



Lemma 29. Let W be the Sierpinski gasket. Then points in W
are represented as random power series[

x
y

]
∈W ⇐⇒

{
x =

∑∞
k=1 εk2

−k

y =
∑∞

k=1 ηk2
−k (48)

where (εk) , (ηk) are defined on Ω = {0, 1}N, i.e., the binary
probability space.
Moreover, εk is i.i.d. on {0, 1}, k ∈ N, with distribution
(2/3, 1/3). That is, Prob (εk = 0) = 2/3, and
Prob (εk = 1) = 1/3. The same conclusion holds for ηk as well.



Lemma 30. Let µ be the IFS measure of the Sierpinski gasket
as above, and ξ = µ ◦ π−1

1 , so that µ has the disintegration.
1. Then the measure ξ is singular and non-atomic. More

precisely, ξ is the product measure "∞1 {2/3, 1/3} defined on
{0, 1}N.

2. For a.a. x w.r.t ξ, the measure σx (dy) (in the y-variable) is
singular. Hence µ is slice singular, and {en}n∈N2

0
is total in

L2 (µ).



step 1 step 2 step 3 step 4

ξ = µ ◦ π−1
1 = "∞1 {2/3, 1/3}

Pr (εk ∈ L) = 2/3, P r (εk ∈ R) = 1/3

Figure 6: The measure ξ, or dξ (x) as an infinite product measure.



Transition probabilities

I There is a Markov chain associated with the transition
probabilities:

· 1/3

��

2/3


0

1/2
�� 1/2

&&

1

1
��

1 0

Figure 7: transition probabilities



I Note that [
2/3 1/3

] [1/2 1/2
1 0

]
=
[
2/3 1/3

]
,

so the conditional expectation can be expressed as a
Perron-Frobenius problem with the row vector

[
2/3 1/3

]
as a left Perron-Frobenius vector.



I As another example, consider the fractal Eiffel Tower WEi

(see Figure 8).

step 0 step 1 step 2 step 3

ξ = µ ◦ π−1
1 = "∞1 {3/4, 1/4}

Pr (εk = 0) = 3/4, P r (εk = 1) = 1/4

Figure 8: Construction of the fractal Eiffel Tower.



I In this case, we have

M =

2 0 0
0 2 0
0 0 2

 , B =


0

0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

 ,

and p = (1/4, 1/4, 1/4, 1/4). It follows that each coordinate
of points in WEi has representation

∑∞
k=1 εk2

−k, where {εk}
is i.i.d. with Pr (εk = 0) = 3/4, and Pr (εk = 1) = 1/4.



I The transition probabilities are given by the diagram below.

·3/4



1/4

��
0

1/3
��

2/3

&&

1

1
��

1 0

One checks that[
3/4 1/4

] [2/3 1/3
1 0

]
=
[
3/4 1/4

]
.



Conjecture 31. Given an affine contractive IFS measure µ
supported in [0, 1]d, let T = (Tij) be the corresponding Markov
transition matrix. Then the following are equivalent:
1. The Fourier frequencies {en}n∈Nd0 are total in L2 (µ).

2. The Perron-Frobenius vector v (vT = v, or
∑

j vjTji = vi)
is non-constant, i.e., not proportional to (1, 1, · · · , 1).
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