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Setting, Outline

Setting: M closed Riemannian manifold, m normalized volume measure.

Wasserstein space (P(M),W2) can be regarded as ∞-dimensional Riemannian
manifold

Heat equation on M is gradient flow for relative entropy Ent( . | m) on
(P(M),W2)

Is there a canonical measure on (P(M),W2)?

Is there a Laplacian on (P(M),W2)?

Is there a stochastic perturbation of the gradient flow for Ent( . | m)
(Brownian motion with drift)?



Setting, Outline

Goal: Construct a reversible diffusion process on the space P(M) of probability
measures on M that is

reversible w.r.t. the entropic measure Pβ on P(M), heuristically given as

dPβ(µ) =
1

Z
e−βEnt(µ|m) dP∗(µ)

associated with a regular Dirichlet form, derived from the pre-Dirichlet
form

E(f ) = 1

2

∫
P(M)

∥∥∇f
∥∥2(µ) dPβ(µ);

in terms of the Wasserstein gradient in the sense of Otto calculus

non-degenerate, at least in the case of the n-sphere and the n-torus.



Entropic Measure — Heuristics

Formal ansatz

dPβ(µ) =
1

Z
e−βEnt(µ|m) dP∗(µ) (1)

with

Ent(· | m) = relative entropy w.r.t. normalized volume measure m

β > 0 a constant (‘inverse temperature’)

P∗ the (non-existing) ‘uniform distribution’ on P(M)

Z a normalizing constant.

Rigorous construction: instead of distribution of µ consider distribution of
conjugate measures µc.



The Conjugation Map

Put c(x , y) = 1
2
d2(x , y).

The c-conjugate of φ : M → R is the function

φc(x) = − inf
y∈M

[
1

2
d2(x , y) + φ(y)

]
φ is c-convex if φ = (φc)c, briefly φ ∈ K
∀µ ∈ P(M) : ∃!φ ∈ K̃ := K/const. s.t. µ = exp(∇φ)∗m

The conjugation map
C : K̃ → K̃, φ 7→ φc

is continuous w.r.t. topology of H1(M)/const.

Theorem

The conjugation map

CP :
P(M) → P(M)

exp(∇φ)∗m 7→ exp(∇φc)∗m

is a continuous involutive bijection.
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The conjugation map
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m

M M

f

ν = f∗m
m

M M

g = f−1

µ = g∗m

Theorem

Ent(µc | m) = Ent(m | µ).



Entropic Measure — Heuristics

Formal ansatz dPβ(µ) = 1
Z
e−βEnt(µ|m) dP∗(µ) is reminiscent of Feynman’s

heuristic picture of the Wiener measure:

dPβ(dg) =
1

Zβ
e−β·H(g) dP∗(g) (2)

with energy H(g) = 1
2

∫ 1

0
g ′(t)2dt.

Given any finite partition {0 = t0 < t1 < · · · < tN = 1} of [0, 1], replace H(g)
by

HN(g) = inf
{
H(g̃) : g̃ ∈ C0, g̃(ti ) = g(ti ) ∀i

}
=

N∑
i=1

|g(ti )− g(ti−1)|2

2(ti − ti−1)
.

Then (2) leads to explicit representation for the finite dimensional distributions

Pβ (gt1 ∈ dx1, . . . , gtN ∈ dxN) =
1

Zβ,N
exp

(
−β

2

N∑
i=1

|xi − xi−1|2

ti − ti−1

)
pN(dx1, . . . , xN).

(3)
Here pN(dx1, . . . , xN) = P∗ (gt1 ∈ dx1, . . . , gtN ∈ dxN) = ’uniform distribution’
on RN . Choosing pN to be the N-dimensional Lebesgue measure makes the
RHS of (3) a projective family of probability measures.
Kolmogorov’s extension theorem: ∃! projective limit, the Wiener measure Pβ .



Entropic Measure — Heuristics

Probability measures P(dµ) on P(M) are uniquely determined by the distri-
butions PM1,...,MN of (µ(M1), . . . , µ(MN)) for all partitions of M into disjoint
measurable subsets Mi . Conversely, if a consistent family PM1,...,MN of probabil-

ity measures on [0, 1]N (for all partitions ∪̇N
i=1Mi = M) is given then there exists

a random probability measure P such that

PM1,...,MN (A) = P((µ(M1), . . . , µ(MN)) ∈ A)

for all measurable A ⊂ [0, 1]N and all partitions ∪̇N
i=1Mi = M.

We don’t have a formula for the finite-dimensional distributions of

dPβ(µ) =
1

Z
e−βEnt(µ|m) dP∗(µ)

but we have a formula for the finite-dimensional distributions of

dQβ(ν) =
1

Z
e−βEnt(m|ν) dQ∗(ν). (4)

Thus new ansatz, taking into account that Ent(m | ν) = Ent(νc | m): Define
Qβ by means of the formula for its finite-dimensional distributions and put

Pβ := (CP)∗Qβ .



Dirichlet-Ferguson Measure — Heuristics

Given measurable partition ∪̇N
i=1Mi = M, heuristic ansatz

dQβ(ν) =
1

Z
e−βEnt(m|ν) dQ∗(ν)

yields formula for the finite dimensional distribution on [0, 1]N :

Qβ
(
ν :

(
ν(M1), . . . , ν(MN)

)
∈ dx

)
=

1

ZN
e−βSM1,...,MN

(x)qN(dx)

where SM1,...,MN (x) = minimum of ν 7→ Ent(m | ν) under the constraint
ν(M1) = x1, . . . , ν(MN) = xN , that is,

SM1,...,MN (x) = −
N∑
i=1

log
xi

m(Mi )
·m(Mi )

and qN = ‘uniform distribution’ in the simplex
{
x ∈ [0, 1]N :

∑N
i=1 xi = 1

}
.

Requiring symmetry and invariance under merging/subdividing leads to

qN(dx) = CN · dx1 . . . dxN−1

x1 · x2 · . . . · xN−1 · xN
· δ

(1−
∑N−1

i=1 xi )
(dxN)

for some constant C ∈ R+.



Dirichlet-Ferguson Measure – Rigorous

The Dirichlet-Ferguson measure Qβ is the probability measure on P(M) with

Qβ
(
ν :
(
ν(M1), . . . , ν(MN)

)
∈ dx

)
= c · e−βSM1,...,MN

(x)qN(dx)

=
Γ(β)

N∏
i=1

Γ(βm(Mi ))

·
N∏
i=1

x
β·m(Mi )−1
i δ

(1−
N−1∑
i=1

xi )
(dxN) dxN−1 . . . dx1.

The latter, indeed, defines a projective family.

Alternative, more direct construction, in terms of

iid sequence (xi )i∈N of points in M, distributed according to m

iid sequence (ti )i∈N of numbers in [0, 1], distributed according to
Beta(1, β)-distribution, i.e. Prob(ti ∈ ds) = β(1− s)β−1 · 1[0,1](s)ds.

Define stick breaking process λk = tk ·
∏k−1

i=1 (1− ti ) and put

ν =
∞∑
k=1

λk · δxk .

Then ν ∈ P(M) is distributed according to Qβ .
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Entropic Measure – Rigorous

Definition

Entropic measure
Pβ := (CP)∗Qβ

is push forward of Dirichlet-Ferguson measure Qβ (with reference measure βm)
under conjugation map CP : P(M) → P(M).

m

M M

f

ν = f∗m
m

M M

g = f−1

µ = g∗m

Theorem

Pβ-a.e. µ has no atoms and no absolutely continuous part.



Entropic Measure – Large Deviations & Asymptotics

Theorem

Pβ satisfies a Large Deviation Principle

− inf
µ∈A◦

Ent(µ | m) ≤ lim inf
β→∞

[
lim sup
β→∞

] 1
β
log Pβ(A) ≤ − inf

µ∈Ā
Ent(µ | m).

©Lorenzo Dello Schiavo

Theorem

limβ→0 Pβ = P0 := δ∗m
push forward of m under the map δ : M → P(M), x 7→ δx

limβ→∞ Pβ = P∞ := δm.



Wasserstein Dirichlet Form

f : P(M) → R is called cylinder function, briefly f ∈ Cyl(P(M)), if

f (µ) = F

(∫
M

V⃗ dµ

)
for suitable k ∈ N,F ∈ C1(Rk) and V⃗ = (V1, . . . ,Vk) ∈ C1(M,Rk)

Squared norm of the Otto-Wasserstein gradient of f at µ ∈ P(M)

∥∥∇Wf
∥∥2(µ) := k∑

i,j=1

(
∂iF · ∂jF

)(∫
M

V⃗ dµ

)∫
M

⟨∇Vi ,∇Vj⟩ dµ

Pre-Dirichlet form, defined on cylinder functions

E0
W(f ) :=

1

2

∫
P(M)

∥∥∇Wf
∥∥2(µ) dPβ(µ).

Denote its relaxation in L2(P(M),Pβ) by EW, that is,

EW(f ) = lim inf
h→f in L2

E0
W(h).

and the domain of the latter by FW.



Wasserstein Dirichlet Form

Wasserstein Dirichlet Form

(EW,FW) is a strongly local regular Dirichlet form.

It coincides with the Cheeger energy for the metric measure space
(P(M),W2,Pβ) (which this way is proven to be infinitesimally Hilbertian).

Wasserstein Diffusion

There exists a strong Markov process
(
(ρt)t≥0, (Pµ)µ∈P(M)

)
with a.s. continuous

trajectories (‘diffusion process’) properly associated with (EW,FW).

Open question: Is EW = E0
W on Dom(E0

W)?
Or, in other words, is (E0

W,Dom(E0
W)) closable?

Affirmative answer in n = 1: von Renesse/St. (2009).

Challenge in n > 1: Is EW ̸≡ 0 on its domain?
Or, equivalently, does the Wasserstein diffusion

(
(ρt)t≥0, (Pµ)µ∈P(M)

)
satisfy

Pβ
{
µ : Pµ

{
∃t > 0 : ρt ̸= ρ0

}
> 0
}
> 0 ?
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Being in Motion

Relaxed energy

EW(f ) = lim inf
h→f in L2

1

2

∫
P(M)

∥∥∇Wh
∥∥2 dPβ = inf

g

1

2

∫
g 2 dPβ

where the infg is taken over all weak upper gradients for f .

g : P(M) → R is a weak upper gradient for f if∣∣∣f (µ1)− f (µ0)
∣∣∣ ≤ ∫ 1

0

g(µt) ·
∣∣µ̇t

∣∣ dt
for a.e. curve (µt)[0,1] in

(
P(M),W2

)
where “a.e.” means P-a.e.

w.r.t. every

P ∈ P
(
AC 2

(
[0, 1];

(
P(M),W2

)))
with sup

t
(et)∗P ≤ C · Pβ

Choose P := Φ̂∗Pβ for suitable Lipschitz family of isometries Φt : M → M
and

Φ̂ : P(M) → P
(
AC 2

(
[0, 1];

(
P(M),W2

)))
, µ 7→

(
(Φt)∗µ

)
[0,1]



Being in Motion

Assume M = Sn or Tn.

For all x0, x1 ∈ M : ∃ Lipschitz family of isometries (Φt)t∈[0,1]

Φ0 = Id

Φt : M → M is an isometry for every t ∈ [0, 1]

d(Φs(y),Φt(y)) ≤ L·|t−s| for all s, t ∈ [0, 1], all y ∈ M, and L = d(x0, x1)

Φ1(x0) = x1.

Lemma

Let (Φt)t∈[0,1] be a Lipschitz family of isometries. Then for every f on P(M)

EW(f ) ≥ 1

2L2

∫
P(M)

∣∣∣f ((Φ1)∗µ
)
− f
(
µ
)∣∣∣2dPβ(µ).



Being in Motion

f is called antisymmetric if f
(
(Φ1)∗µ

)
= −f

(
µ
)
for all µ.

Theorem

For every antisymmetric Borel function f on P(M)

EW(f ) ≥ 2

L2

∫
P(M)

f 2
(
µ
)
dPβ(µ).

In particular, EW(f ) = 0 ⇐⇒ f ≡ 0.

Theorem

For every non-constant Lipschitz function V : M → R, the function f : P(M) →
R, µ 7→

∫
M
V dµ has nonvanishing Wasserstein energy EW(f ).

More explicitly, for every x0, x1 ∈ M and ϵ > 0 with
|V (x1)− V (x0)| ≥ LipV ·

[
1
2
d(x0, x1) + 2ϵ

]
and with η := Pβ

(
Bϵ(δx)

)
> 0,

EW(f ) ≥ η

8
(LipV )2.


