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Setting, Outline

Setting: M closed Riemannian manifold, m normalized volume measure.

Wasserstein space (P(M), W>) can be regarded as co-dimensional Riemannian
manifold J

Heat equation on M is gradient flow for relative entropy Ent(. | m) on
(P(M), W) |

m |s there a canonical measure on (P(M), W;)?
m Is there a Laplacian on (P(M), W,)?

m Is there a stochastic perturbation of the gradient flow for Ent(. | m)
(Brownian motion with drift)?



Setting, Outline

Goal: Construct a reversible diffusion process on the space P(M) of probability
measures on M that is

m reversible w.r.t. the entropic measure P? on P(M), heuristically given as

dPﬂ(,u,) _ %efﬁ Ent(u/m) dP* (1)

m associated with a regular Dirichlet form, derived from the pre-Dirichlet

form 1
£(f) = 5/ V(P () dP% (1)
P(M)

in terms of the Wasserstein gradient in the sense of Otto calculus

m non-degenerate, at least in the case of the n-sphere and the n-torus.



Entropic Measure — Heuristics

Formal ansatz
427 () = e~ ER gp () (1)
with
m Ent(- | m) = relative entropy w.r.t. normalized volume measure m
m (> 0 a constant (‘inverse temperature’)
m P* the (non-existing) ‘uniform distribution’ on P(M)

m Z a normalizing constant.

Rigorous construction: instead of distribution of i consider distribution of
conjugate measures .



The Conjugation Map

Put ¢(x,y) = 3d%(x, y).
m The c-conjugate of ¢ : M — R is the function

1
c — —inf | = 2
#'(x) = —inf {2d (x,y)+<p(y)}
m o is c-convex if ¢ = (¢°)¢, briefly p € K
m VueP(M): 3lp ek :=K/const. st. u=exp(Vip).m

m The conjugation map
C: K=K, p— ¢

is continuous w.r.t. topology of H*(M)/const.

The conjugation map

PM) = P(M)

Cp exp(Vp)sm  —  exp(Ve©).m

is a continuous involutive bijection.
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Ent(p | m) = Ent(m | p).




Entropic Measure — Heuristics

Formal ansatz dP”(y) = e ” Ent(um) dP* (1) is reminiscent of Feynman's
heuristic picture of the Wiener measure:

dP”(dg) = - &) 4" (g) 2)
Zs

with energy H(g) = 3 fo

Given any flnlte partltlon {O = to <ty <--- <ty =1} of [0,1], replace H(g)
by

: - . lg(t:) — g(ti-1)|*
H =inf {H : i) = i .
n(g) =inf {H(&): &€ Co, &(t:) =g(t) Vi} Z 2(t —t, 3

Then (2) leads to explicit representation for the finite dimensional distributions

N 2
1 B 3 i — xi-1]
Zon exp ( E - t,t,1> pN(dXh.. . ,XN).
3)

Here py(dxi,...,xn) = P* (gy € dxu,. .., 8 € dxn) = 'uniform distribution’
on RV, Choosing pw to be the N-dimensional Lebesgue measure makes the
RHS of (3) a projective family of probability measures.

Kolmogorov's extension theorem: 3! projective limit, the Wiener measure P?.

Pﬂ (gtl S dX17. ., 8ty € de) —




Entropic Measure — Heuristics

Probability measures P(du) on P(M) are uniquely determined by the distri-
butions Py,,....my of (u(Mi),...,u(Mn)) for all partitions of M into disjoint
measurable subsets M;. Conversely, if a consistent family Py, ,...,m, of probabil-
ity measures on [0, 1]V (for all partitions UY.; M; = M) is given then there exists
a random probability measure P such that

Puy,....my (A) = P((e(M1), ..., p(Mn)) € A)

for all measurable A C [0,1]" and all partitions U M; = M.

y
We don't have a formula for the finite-dimensional distributions of
dP? () = %e—ﬁ Ent(u|m) dP* (1)
but we have a formula for the finite-dimensional distributions of
dQP (v) = %e—a Ent(mv) 40" (v). (@)

Thus new ansatz, taking into account that Ent(m | ) = Ent(v° | m): Define
Q? by means of the formula for its finite-dimensional distributions and put

P’ = (¢p).Q°.



Dirichlet-Ferguson Measure — Heuristics

Given measurable partition L'J,N:lM,- = M, heuristic ansatz

dQ,B(V) _ le—BEnt(m\u) dQ*(V)

yields formula for the finite dimensional distribution on [0, 1]V:
ﬁ( . _ 1 BSu oy
Q°(v: (v(Mi),...,v(My)) € dx) = Z—Ne LMy ) gy (dx)

where Sy, ... vy (x) = minimum of v — Ent(m | v) under the constraint
v(My) = xi,...,v(Mn) = x, that is,

Suy,. vy (x) = Z Iog m(M )

and gy = ‘uniform distribution’ in the simplex {x € [0, VN x = 1},
Requiring symmetry and invariance under merging/subdividing leads to

dX1 e dXN_1 .5 dXN)

dx)=cV.
qn(dx) XL X X1 xn O Z’“,(

for some constant C € R...



Dirichlet-Ferguson Measure — Rigorous

The Dirichlet-Ferguson measure Q° is the probability measure on P(M) with

Q*° (y : (v(My), ..., v(My)) € dx) =c. e M.yt g (dx)

= r(ﬁ) H ﬁ g (dXN) dXN 1... dX1.
Hr(ﬂm(M ) = o

The latter, indeed, defines a projective family.



Dirichlet-Ferguson Measure — Rigorous

The Dirichlet-Ferguson measure Q° is the probability measure on P(M) with

Q*° (y : (v(My), ..., v(My)) € dx) =c. e M.yt g (dx)

= r(ﬁ) H ﬁ g N—1 (dXN) dXN_1 oo dX1.

Hr(ﬁm(M)) = 050

The latter, indeed, defines a projective family.
Alternative, more direct construction, in terms of

m iid sequence (x;)ien of points in M, distributed according to m

m iid sequence (t;)ien of numbers in [0, 1], distributed according to
Beta(1, 8)-distribution, i.e. Prob(t; € ds) = (1 —s)’ "' - 1 y(s)ds

Define stick breaking process Ax = ti - H,.kz_ll(l — t;) and put

Then v € P(M) is distributed according to Q°.




Entropic Measure — Rigorous

Definition

Entropic measure

P? = (€p).Q°
is push forward of Dirichlet-Ferguson measure Q° (with reference measure Sm)
under conjugation map €p : P(M) — P(M).

m v=f.m

M M

PP-a.e. u has no atoms and no absolutely continuous part.




Entropic Measure — Large Deviations & Asymptotics

IP? satisfies a Large Deviation Principle

— inf Ent(p | m) < liminf [Iim sup] 1 IogIP’ﬁ(A) < — inf Ent(g | m).
HEA® B—roo B— o0 B HEA

m limgoP? =P% = d.m
push forward of m under the map § : M — P(M), x — 4y

B limg e PP =P = 4.




Wasserstein Dirichlet Form

m f:P(M)— R is called cylinder function, briefly f € Cyl(P(M)), if

f(u)=F</M\7du>

for suitable k € N, F € C}(R¥) and V = (W, ..., Vi) € C*(M, R¥)
m Squared norm of the Otto-Wasserstein gradient of f at p € P(M)

K
IVwf|(n) := Y- (0F - 55F) (/M Vdu) /M<vv,-,vv,-> dp
ij=1
m Pre-Dirichlet form, defined on cylinder functions

Eulf) = %/m 17w (1) B ().

Denote its relaxation in L2(P(M), P?) by Ew, that is,
Yy
Ew(f) = liminf EX(h).
w(f) = lim inf, &w(h)

and the domain of the latter by Fw.




Wasserstein Dirichlet Form

Wasserstein Dirichlet Form
(éw, Fw) is a strongly local regular Dirichlet form.

It coincides with the Cheeger energy for the metric measure space
(P(M), Wa, P?) (which this way is proven to be infinitesimally Hilbertian).

Wasserstein Diffusion

There exists a strong Markov process ((pt)e>0, (Pu)uep(m)) With a.s. continuous
trajectories (‘diffusion process’) properly associated with (Ew, Fw).




Wasserstein Dirichlet Form

Wasserstein Dirichlet Form

(éw, Fw) is a strongly local regular Dirichlet form.

It coincides with the Cheeger energy for the metric measure space
(P(M), Wa, P?) (which this way is proven to be infinitesimally Hilbertian).

Wasserstein Diffusion

There exists a strong Markov process ((pt)e>0, (Pu)uep(m)) With a.s. continuous
trajectories (‘diffusion process') properly associated with (Ew, Fw).

Open question: Is &w = & on Dom(&Y)?
Or, in other words, is (%, Dom(£%)) closable?
Affirmative answer in n = 1: von Renesse/St. (2009).

Challenge in n > 1: Is E&w # 0 on its domain?
Or, equivalently, does the Wasserstein diffusion ((pt):>0, (Pu)uep(u)) satisfy

Pﬂ{p: PM{EIt>O:pt7$po}>0}>0?




m Relaxed energy

Ew(f) = liminf f/ |[Vwh|* dP® = inf 5 /dePﬁ

h—fin 12 2

where the infg is taken over all weak upper gradients for f.

m g:P(M)— R is a weak upper gradient for f if

‘f(ul) - f(uo)’ < /Olg(ut) fne] dt

for a.e. curve (ue)p,y in (P(M),W2) where “a.e.” means P-a.e.
w.r.t. every

Pc P(ACz([O, 1]; (P(M),W2)>) with  sup (e).P < C- P’

m Choose P := ®,P* for suitable Lipschitz family of isometries ®; : M — M
and

& P(M) = P(AC([0,1]; (P(M),W2) ), s ((®0)ert) 0y



Being in Motion

Assume M = S" or T".

For all xo,x1 € M : 3 Lipschitz family of isometries (®+):co,]

m & =1Id

m & : M — M is an isometry for every t € [0,1]
d(®s(y), P:(y)) < L-|t—s|foralls,t € [0,1], all y € M, and L = d(xo, x1)
d1(x0) = x1.

v

Let (®t):cpo,1) be a Lipschitz family of isometries. Then for every f on P(M)

Ew(f) > % /7:(M) ‘f((dn)*p) - f(u)rdpﬁ(#).

.




f is called antisymmetric if f((P1).p) = —f(p) for all p.

For every antisymmetric Borel function f on P(M)

2 2 8
Ew(f) > L(M)f (n) dP”(p).

In particular, E&w(f)=0 <= f=0.

For every non-constant Lipschitz function V : M — R, the function f : P(M) —
R, g+ [y V du has nonvanishing Wasserstein energy Ew(f).

More explicitly, for every xp,x1 € M and ¢ > 0 with
[V(x1) — V(x0)| > LipV - [3d(x0, x1) + 2¢] and with 5 := P’ (B(x)) > 0,

Ew(f) > Z(LipV)’.



