Chapter One

Measure, Energy, and Metric

1.1 GRAPH APPROXIMATIONS

In ordinary calculus we learn that continuous structures may be approximated by
discrete structures. For example, the derivative is the limit of difference quotients,
the integral is the limit of Riemann sums, and so on. At first, our naive intuition is
that the discrete structures are simpler than the continuous ones, but we soon learn
otherwise: The rules for derivatives are simpler than the corresponding rules for dif-
ference quotients (in fact, such rules as the product rule are rarely stated explicitly
for difference quotients, although they do underlie the proofs of the correspond-
ing derivative rules), and the fundamental theorem of the calculus allows very easy
evaluation of some integrals. As we study calculus on fractals, we will also take
the approach of using discrete approximations. At present there are no results that
make the continuous structures simpler than the discrete ones, so we will have to
devote careful attention to the discrete case. In the process we will learn some new
things about ordinary calculus, since the unit interval is itself a self-similar set. Our
plan is to develop the theory simultaneously for two examples: the unit interval /
and the Sierpinski gasket SG.

The usual definition of the derivative involves arbitrary increments, and the
Riemann sums in the definition of the integral allow arbitrary subdivisions of the
interval. This is unnecessarily complicated. It suffices to deal with dyadic points
k/2" (0 <k <2™,0 < m <00). These points are dense in the interval, and as long
as all the functions we deal with are continuous, it suffices to know the values at the
dyadic points. To see how the dyadic points arise naturally we need to examine the
self-similar structure of /. Consider the mappings Fox = %x and Fix = %x + % that
send [ to its left and right halves. Note that these are both contractive similarities
(contraction ratio % fixed points 0 and 1, respectively) and the images Fo/ and F;/
intersect at the point % The self-similar identity (the whole as union of similar parts)

(1.1.1) I=FIUFI

uniquely determines /, as long as we specify that / is a nonempty compact set
(both the empty set and the whole line satisfy (1.1.1), as well as the set of rational
numbers in /, dyadic numbers in /, etc.). We note that (1.1.1) is not the only self-
similar identity for /. For example, we can get many more by iteration. Write F;, =

Fy 0Fy0---0F, forw=(wi,...,wy),eachw; =0or1 (we call w a word of
length m = |w|). Then
(1.1.2) I= U Fyl

lw|=m
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holds for any m. We will call this the level m decomposition and call F, a cell
of level m. Of course, (1.1.2) is just the decomposition of I into dyadic intervals
[k/2™, (k4 1)/2™]. We could also do irregular decompositions, such as

(1.1.3) I =FRIUFlUF;1.

There are also totally unrelated self-similar identities, for example involving %x,

1x+ 1 and 1x+ 2. This shows that the interval is different from the other fractals
we will be studying.

The dyadic points are just the boundary points of the cells of various levels.
Let us introduce some notation. ¥y = {qo, q;} for go = 0 and g; = 1 is the set of
boundary points of /. Then inductively

(1.14) V=J FVa-r.

or equivalently

(1.1.5) Vw=|J UPFua.

lwl=m i

give the set of dyadic points {k/2™} for fixed m. Note that aside from the boundary
points Vy, every point in V,, has two addresses, x = F,,qo = F,,/q:, for the appropri-
ate choices of w and w’, so x is the left endpoint of one cell and the right endpoint
of an adjacent cell. We will call such points junction points. We will regard the sets
V as the vertices of a graph I',, with edges written x 5 y provided x = k/2™ and
y=(k+1)/2". Equivalently x +; y if there exists a cell of level m containing both
x and y (as boundary points). Inductively, we build the graph I',, from the graph
I'n—1 by taking the two images FoI',,—; and FiT",,—; and identifying the common
vertex % See Figurel.1.1. Note that the set of vertices is increasing,

(1.1.6) VoCViCVC---.

However, the edge relations change: If x, y both belong to ¥, and x ; y, then x, y
both belong to ¥, but are not connected by an edge in I',, ;. Also note that every
junction point in I',, has exactly two neighbors in V,,. Of course these graphs are
very boring!

So now let’s look at the case of SG. The self-similar structure of SG may be
viewed as a natural generalization of the self-similar structure of /. This time we

—eo—eo—eo— |,

Figure 1.1.1
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work in the plane and consider a set of three mappings F; : R2>R%i=0,1,2,
defined by

1
(1.1.7) Fix=§(x—ql‘)+(1i,

where {g;} are the vertices of a triangle (any nondegenerate triangle will do). Then
SG satisfies the self-similar identity

2

(1.1.8) SG =] F(56).
i=0

As in the case of I, the mapping F; is a contractive similarity with contraction
ratio % and fixed point g;. Also, SG is the unique nonempty compact set satisfy-
ing (1.1.8). The three cells on the right side of (1.1.8) intersect pairwise at single
points. This means that while SG is connected, it is just barely so. If you remove
just these three junction points, it becomes disconnected. You could think of SG
as the ideal police state. To keep track of the whereabouts of all its citizens (at
this level), the state need only post sentries at these three points. Similarly, if the
state wants more detailed locations, it will post a finite number of sentries at more
junction points. The terms “finitely ramified” and “postcritically finite” are used to
describe this topological property. We will discuss the latter term in Chapter 4.

It is important to keep in mind that it is only the topological structure of SG
that is of interest here, not the geometric structure inherited from its embedding
in the plane. That is why we don’t care which triangle we start with. But there
are many other embeddings of SG in the plane, such as the famous Apollonian
packing. We don’t want to prejudice ourselves by looking at SG with “Euclidean
eyes.” In particular, although SG contains many straight line segments, we don’t use
any ordinary calculus concepts obtained by restricting functions on SG to these line
segments. Eventually we will introduce a natural metric on SG that is not equivalent
to the Euclidean metric (in any embedding in any dimensional Euclidean space)
and that contains no rectifiable curves. Also, although our Euclidean eyes tend to
see the triangle containing SG as a sort of boundary (since SG has no interior, the
topological notion of boundary is not relevant), we will define the boundary to be
the set {qo, 41, g2} of vertices of the triangle.

In order to be able to discuss / and SG simultaneously, we will use the symbol
K to denote either one (and later other self-similar sets). The self-similar identi-
ties (1.1.1) and (1.1.8) may be combined as

(1.1.9) K=|JFK

(taking advantage of the ambiguity concerning the number of terms in the union).
By iteration we have

(1.1.10) K= |J Rk,

where F,, is defined as before, but the letters w; in the word w may take on the
values {0, 1, 2} in the case of SG. This will be our decomposition of X into cells of
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Figure 1.1.2

level m. Note that in the case of SG as well as /, distinct cells of level m are either
disjoint or intersect at a single point; these will be our junction points. In the case of
SG, unlike the interval, the junction points are topologically distinguishable from
general points. In other words, while there are analogs of the decomposition (1.1.3),
there are essentially no other decompositions. For SG we take Vo = {40, q1, 42}
Then (1.1.4) or (1.1.5) defines V,, in both cases. Note that every point in V,, \ Vj is
a junction point with two addresses, x = F,,q; = F,yq; for the appropriate choices
(always i # i’). In particular,

(1.1.11D) {Foq1 = Fiq0, F192 = F2q1, F2q90 = Foga)

are the three junction points in ¥} \ ¥y in the SG case. We construct a graph I',,
with vertices V,, by defining the edge relation x 7, y if there is a cell of level m
containing both x and y (3 w with |w| =m, i, j such thatx = F,,q; and y = F,,q;).
In the case SG, I'), is obtained by taking the three copies F;I",,—; of I',,_; and
identifying the points (1.1.11). Figure 1.1.2 shows the first three graphs.

Note that on SG every vertex in V,,, except for the three boundary points, has
exactly four neighbors in I';,. There are times when the existence of the boundary
is technically annoying, but we can easily get rid of it by passing to the double
cover K. That is, we take two copies of K and glue them together at the common
boundary points. If we do this for / we obtain the circle, a one-dimensional mani-
fold without boundary. The glued boundary points in SG have neighborhoods that
are homeomorphic to neighborhoods of any junction point in SG. In this way, SG
is an example of a “fractafold” without boundary modeled on SG. In the graphs
Iy (¢ewo copics of Ty, glued together at the corresponding boundary points), every
vertex has exactly four neighbors. In other words, the graph is 4-regular.

EXERCISES

1.1.1. Show that #V,, = 3"+ 4 3).

1.1.2. Let x = F,q; with |[w| =m in V,, \ V5. Give an algorithm for finding the
other address F,,q; for x in V,,. (Hint: If w,, # i, then w;, = wy fork < m,
w,, =i,and j = w,,. If w, =i, then x € V,,_;, so reason by induction.)

1.1.3. Explicitly identify the four neighbors of x in I, for x € ¥, \ ¥ and the
two neighbors of g;.
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1.1.4. Show that the dihedral symmetry group Ds of the equilateral triangle (three
reflections, two rotations, and the identity) acts as a symmetry group of SG,
and the action on I',, is given by permutations of the letters {0, 1, 2}.
1.1.5. Show that the set V| \ ¥p in SG is characterized topologically as the only
set of three points whose removal disconnects SG into three components.
1.1.6. Show that SG is topologically rigid: Any homeomorphism must be one of
the six symmetries in Ds.
1.1.7.* Show that SG is not topologically rigid in that there are infinitely many
“accordian moves” across an identified boundary point.
1.1.8. Show that any two points in SG may be joined by a rectifiable curve (in fact,
an infinite polygonal line).
1.1.9. (Nesting property) Show that if two cells (not necessarily of the same level)
intersect in more than one point, then one contains the other.
1.1.10. If x € V,,, then there exists a “‘chain” of points (not necessarily distinct)
X0, X1, ..., %m such that xo = qo, xx € V%, and x,, = x, and x;_; 3x; for
l1<k<m.

1.2 SELF-SIMILAR MEASURES

The notion of a general measure is a far-reaching generalization of notions such
as length, area, volume, and probability. The theory is quite technical, and we will
not attempt to describe it here. If you are familiar with measure theory, then you
will be able to understand what we do here in that broader context (the key tool
is the extension theorem of Carathéodory). If you are not familiar with measure
theory you can still relax, because everything we are going to do is quite simple.
This is thanks to the self-similar structure of K and also to the fact that we only
need to integrate continuous functions, so we may imitate the integrals of Cauchy
and Riemann rather than the integral of Lebesgue.

We want to consider what will be called here a regular probability measure . on
K. Roughly speaking, u assigns weights p(C) to all cells C of K in an additive
fashion. Precisely, we require just the following four conditions:

(1.2.1) (positivity) u(C) > 0;

N

(122) (additivity) if C=|]C;,
j=1

where the cells {C} intersect only at boundary points, then

N
w(C) =" u(Cy;
j=1
(1.2.3) (continuity) u(C) — 0
as the size of C goes to 0;

(1.2.4) (probability) u(SG)=1.
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Condition (1.2.3) says that points have zero measure, and this enables us to
ignore point intersections in condition (1.2.2). We may then extend the domain
of u to include finite unions of cells: If

N
(1.2.5) 4=]Jc¢;
Jj=1
is a finite union of cells, disjoint except for point intersections, define

N
(1.2.6) u(d) =" u(C).

j=1
Condition (1.2.2) guarantees that this is unambiguous: A different decomposition
into cells would yield the same measure. To see this, first observe that there is a
unique canonical decomposition of 4 into a union of cells of maximal size (C is
not contained in a larger cell in 4). Indeed, because of the nesting property, the
maximal cells in A are disjoint (except for point intersections) and their union is 4.
Then any other representation of A is obtained by subdividing the maximal cells
in some manner, and (1.2.2) says that the measure is conserved in the process. The
additivity condition (1.2.2) continues to hold for sets that are finite unions of cells.

Similar reasoning shows that in place of (1.2.2) it suffices to verify for every cell

F,K,

(12.7) w(FyK) =Y u(FyFK),

the additivity for the decomposistion of F, K into cells of the next level. The con-
struction of x can then be imagined as follows: We assign weight 1 to SG, the cell
of level 0. Inductively, having assigned weights to all cells of level m, we decide
how to split the weight of each such cell when we subdivide it into cells at level
m + 1. The only restrictions are that (1.2.7) and (1.2.1) hold for the splitting, and
(1.2.3) holds in the limit. Clearly there is a huge selection of measures!

The simplest choice is to do all splittings evenly. In the case of 7, each cell of
level m has measure 27", its usual length. In fact, if 4 is any interval with dyadic
endpoints, then w(A4) is the length of A. In the case of SG, each cell of level m
will have measure 37". We refer to this as the standard measure. It happens to
coincide, up to a constant, with Hausdorff measure on SG in dimension log 3/ log?2
(the exact value of the constant is an unsolved problem). Of course, the definition
of Hausdorff measure is quite complicated, whereas our definition is quite simple.

The standard measure is a special case of a self-similar measure. To determine
a self-similar measure we choose a set of probability weights {x;} on the index set
{0,1} or {0, 1,2, },

(1.2.8) Zu,- =1 withpyu; >0,

1

and then set

m
(1.2.9) u(FuK) =[] nw, forlwl=m.

j=1
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For simplicity we will write u,, for the right side of (1.2.9). Another way of saying
this is that we use the weights {u;} to accomplish the splitting (1.2.7). The standard
measure is obtained by choosing all the u; equal, so u; = % for 7 and u; = % for SG.

For a self-similar measure, each mapping F; contracts measures of sets by a
factor u;,

(1.2.10) n(F;4) = pipn(4),

since this is clearly true for cells by (1.2.9). Another way of expressing this is to
take a set 4 and split it as | J, 4N F; K, and then by additivity,

(1.2.11) u(d) =y u(4NFK).

But F'4=F '"(ANFK) and ANF,K = F;F, "(ANF,K), so p(AN F,K) =
;,L,';L(E—I(A N F; K)) by (1.2.10). Together this shows u(4AN F; K) = ;Li[,L(Fi_lA).
Substituting into (1.2.11) yields the self-similar identity

(1.2.12) wA) =) pin(F ' 4).

It is easy to see that (1.2.12) implies (1.2.10) (replace 4 by F; A4, and then only
one term survives on the right side) and hence (1.2.9), so the self-similar identity
(1.2.12) (and the probability condition (1.2.4)) determines the measure u uniquely.
(It is also possible to prove this using a form of the contractive mapping principle,
but the argument is more technical.)

On I, the self-similar measures are often called Bernoulli measures. Using the
binary expansion, we may identify x € I with an infinite string of 0’s and 1’s (there
is some ambiguity when x is a binary rational, but the set of binary rationals has
measure zero and can be ignored). If we choose 0 with probability i and 1 with
probability u;, independently for each binary digit, we get exactly the self-similar
measure. Similarly, on SG we can interpret a self-similar measure as giving a recipe
for choosing a point x in SG “at random.” We first decide which of the three cells
F;K of level 1 the point belongs to by spinning a roulette wheel where each out-
come is alloted an angle of 27 ;. We call the chosen value w;. We then determine
which of the three level 2 cells F,,, F; K x belongs to by another, independent spin
of the same roulette wheel, and so on.

One of the main reasons for wanting to have a measure is to be able to integrate
functions. Since the functions we want to integrate are usually continuous, this is
easily accomplished by imitating the ordinary integral in calculus: We subdivide
the space into a union of essentially disjoint small sets {4} and take the limit
of sums 3 ; f(x;)u(4;), where x; € 4;. Since f is continuous, hence uniformly
continuous on the compact space K, the choice of the point x; € 4 ; does not matter
in the limit.

In our setup there is a natural choice of subdivisions, namely

(1.2.13) K= |J Rk,

lw|=m
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the subdivision into all cells of level m. (See the exercises for other choices.) Then

(1219 [ fti=fiw ¥ FeiuE
K lw|=m

for x,, € F,, K. It is not difficult to show that the limit exists and satisfies the usual
properties of integrals: linearity in f, and the estimate

(1.2.15) ménfg/deu fml?xf.

If A is any finite union of cells, we can define [, fdu by restricting to cells con-
tained in A on the right side of (1.2.14). In analogy with the usual trapezoidal rule
we may replace f(x,) by the average of f over the boundary points of the cell,

2
1
(1.2.16) /fdu=mlggogz Z S(Fug)u(Fy,K),
K i=0 |wl=m
in the case of SG. This has the advantage of exhibiting the integral as a limit of dis-
crete graph integrals. Given a graph, if we assign probabilities v(x) to the vertices,
we write

(1.2.17) / fdv=>" fx)v(x).
r

xeV

Then (1.2.16) may be written
(1.2.18) / fdp = lim / fdvp,
K m—oo Jp
where v, (x) is defined to be
1 .
g(M(FwK)'l‘/L(Fw’K)) ifxeVy\Vo

has the addresses x = F,,q; = Fyq;, and %u(F,"” K) if x = g;. For the standard
measure this is simply

w2 1
(1.2.19) /rmfdvm=3 3 > f(x)+§Zf(x)

x€Va\Vo x€eVy

Note that we could drop the sum over the boundary points since this goes to zero
in the limit. Nevertheless, for certain applications it is better to include them. The
factor % on the right side of (1.2.19) will play a role in the pointwise formula for
the Laplacian.

In the case of the interval /, if we use the standard measure then we get the usual
integral. For other choices of measure we get different integrals. There is a theorem
that says [, fdu = fol f o (x)dx for a suitable choice of a continuous change of
variable function ¥ (depending only on w), but this function will be very irregular,
certainly not differentiable.
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If we fix a positive function f such that [, fdu =1, then

(1.2.20) v(A)=/fdu
4

defines another measure. The measure v is called absolutely continuous with
respect to . In fact, the correct definition requires that we allow a much broader
class of functions, including discontinuous and unbounded functions. You might
wonder if it is possible to pass from one self-similar measure to another by such a
construction, but in fact it is not possible. It is easy to see that it is impossible using
a bounded function f, since there are many cells where the ratio u'(C)/u(C) is
larger than any fixed constant, if « and u’ are distinct self-similar measures.

We observe that it is possible to transform the self-similar identity (1.2.12) into
an identity involving integrals of functions. Indeed, if f = x4, the characteristic
function of the set 4 (not really continuous, but having only a finite set of discon-
tinuities, so that the integral may be defined as before), then

(12.21) f fdu=2mf foFdp
K i K

is the same as (1.2.12) (note that f o F; = x -1 4). By taking linear combinations
and passing to the limit, it follows that (1.2.21) holds for all continuous functions.

EXERCISES

1.2.1. Show that the self-similar identity (1.2.12) generalizes to
u(A) = Z p,wu(F,;IA) for any m,
|lw|=m

and similarly (1.2.21) generalizes to

[ fan=3 [ sorian.

|lw|=m
1.2.2. Let P be a finite set of words such that
K=|J F.K,
weP
disjoint except for point intersections. We call P a partition. Show that
wA) =) pup(F, ' 4)
weP
and
/ fdu = Zuw/fondu.
K weP

1.2.3. Let p = min y ;. Show that for any given r > 0 there exists a partition P such
that pr < u,, < r for every w € P.
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1.2.4. Suppose p; # w; for some i # j. Show that there exist adjacent cells Fy, K
and F,y K with |{w| = |w’| such that u(F, K)/u(F, K) is as close to zero
as desired.

1.2.5. Let u be a self-similar measure on /. Use (1.2.21) to compute f[ xdu(x).
Do the same for [, x?du(x).

1.3 GRAPH ENERGIES

Given a finite, connected graph G and a real-valued function u on its vertices, we
define the graph energy by

(13.1) Eg(u) =) _(u(x)—u(y)*.

x~y

Here the sum extends over all edges of the graph. If we were to sum first over all
vertices x and then over all neighboring vertices, then each edge would occur twice
and we would compensate by multiplying by a factor of % Energy is a quadratic
form in u. We will also need the associated bilinear form

(13.2) Eg(u,v) =Y (u(x) —u(»))(v(x) = v(y)

x~y

for pairs of functions. Of course Eg(u) = Eg(u, u), and we can recover the bilinear
form from the quadratic form by the usual polarization identity:

1
(1.3.3) Eg(u,v)= Z(E(;(u+v)—EG(u—v)).

It is clear that Eg(u) = O if u is constant, and the converse holds since we are
assuming that G is connected. Also, Eg(u, v) is an inner product on the space of
functions on ¥ modulo constants.

Another property of energy is called the Markov property: If we replace u by the
minimum (or maximum) of # and a constant, the energy cannot increase. The reason
for this is simply that each term (u(x) — u( y))2 either stays the same or decreases.
This is often stated in the form Eg ([u]) < E(u) for [u] = min{1, max{u, 0}}.

Now suppose we have two graphs, G and G’, such that ' C V'. We will think
of G as a subgraph of G'. (We do not make any assumptions concerning the edges
of G and G'.) Given a function #’ on V', we can always restrict it to get a function
u = u'|ly on V. There is no apparent relationship between the energies E¢ (#') and
Eg(u). If we go the other direction, starting with u defined on V, there are many
possible extensions to V. It is clear that there is at least one extension that mini-
mizes the energy E¢ (). We will write # for such an energy-minimizing extension
and call it a harmonic extension (in the examples of interest, there will be a unique
harmonic extension): it|y = u and Eg (1) < Eg (u') for all ' such that «'|y = u.
We will call Eg (i) the restriction of Eg to G.

Now it might happen, if we are lucky, that the restriction of E¢ to G is equal to
a multiple of Eg,

(1.34) Eg(u)=rEg(u),
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for all functions u on V. We call (1.3.4) a renormalization equation. Typically,
0 < r < 1. This means that if we renormalize the definition of energy on G’ by
multiplying by 1/, then the restriction to G gives the same value, r ' Eg (&) =
Eg(u), and since # is an energy minimizer, we have

(1.3.5) r'Eg ) > Eg(u)

for every extension u’ of u. In other words, energy increases with extension, except
in the case of harmonic extension, when it remains unchanged.

This might seem like wishful thinking, but it actually works for the sequences
of graphs I',, approximating K in both cases, / and SG! Let’s look at [/ first. The
first graph I'y just consists of the vertices {0, 1} connected by an edge, while I'y
consists of three vertices {0, % 1} connected sequentially. So the energies are given
explicitly by (we change notation for simplicity)

(1.3.6) Eo(u) = (u(1) — u(0))*

and

1\\? 1 2
(1.3.7) E )= (u'(l)—u’(i)) +<u’ (5)—1/(0)) .

If «’ is an extension of u, then u'(1) = u(1) and u’(0) = u(0), so the only issue is,
What is u’(%)? To minimize E (u’) and so obtain the harmonic extension, it seems
obvious that we should take

(138) i (%) - %<u<1)+u<0)),

the linear extension (if we set «'( 5‘) = x and find the value where the x-derivative
vanishes, we obtain (1.3.8)). A simple computation then reveals that

1
(1.3.9) Em) = EEO(u),

a renormalization equation with r = 3.

But now consider what happens when we go from I',, to I',,4+1. The vertices
V41 consist of all points of the form %, and among them, those with k even
belong to V,,, while those with k odd are new. If u is defined on V,,, the question of
harmonic extension is, What is i (57 ) when k is 0dd? At first, minimizing energy
may seem like a global problem, but in fact it is entirely local! Fix an odd value,
say k =2j+ 1. Then &i(355) only appears twice in E,.1(i0), specifically in the
terms

242\ _(2j+1\\> [.[(2j+1 2; \\°
(1.3.10) (u( il )—u( ot )) +(u( s )—u(2m+1)) .




12 CHAPTER 1

This is the identical problem to the minimization of (1.3.7), and has the identical
solution: Interpolate linearly,

_(2j+1 1 2j+2 2j
(1.3.11) u (W) = 3 (“ (W) +u(2m+l)> :

Then the same computation that yielded (1.3.9) shows that (1.3.10) is equal to
w3 —u(k )2, and summing over j we obtain

a renormalization equation with the same constant r = %
We define the renormalized graph energies by

(1.3.13) Em(u) =r""En(u),

for » = 1/2. For any function, {&,, (1)} is a nondecreasing sequence. It is in fact con-
stant when u is a linear function. A linear function (at least on the set V, of dyadic
rationals) is uniquely determined by its boundary values u(0) and u(1) by repeated
use of the local extension algorithm (1.3.11). This may seem banal, because linear
functions are such easily understood objects, but it will help us to understand the
less trivial analog on SG.

The renormalized energy may be written explicitly as

PR () () -E ()

k=1 m

If u is continuously differentiable, the mean value theorem allows us to write this as

il 1
Y W) -
2
k=1
for "—‘,,,—1 <x; < zi,,,, a Riemann sum for the integral
1
(1.3.14) / u'(x)%dx.
0

So in that case &£, (u) converges to (1.3.14). We can also look at the renormalized
bilinear form &,, (u, v) = r~™ E,,(u, v) and see that

1
lim &, (u,v) :/ u' (x)v' (x)dx
m— 00 0
if u and v are both continuously differentiable. We already know that if u is linear

then &, (u) is constant, but we may also assert that &, (u, v) is constant for any
function v. Indeed u’(x) is then a constant, namely u(1) — u(0), so

1 1
/ ' () (x)dx = (u(l) — u(O))/ v'(x)dx = Ey(u, v),
0 0
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and by splitting the integral at the points k£/2™ we also obtain fol u' (x)v' (x)dx =
Em(u, v). We may also observe directly that

<) (o-(3)
(1.3.15) 2 (u (é) - u(0)> (v (%) - U(O))
= (u(1) —u(0)) [(v(l) —v (%)) + (v (%) - v(O))]

=& (u, v)

since u(1) —u(3) = u(3) —u(0) = 3 (u(1) —u(0)), etc.

Next we consider the case of SG. To keep the computation as simple as possi-
ble, we will exploit the symmetry. Suppose u is defined on ¥y by u(go) =1 and
u(qy) = u(gz2) =0, so &(u) =2, and we want to extend u to V; to minimize
energy. By symmetry we will have u(Fpq,) = u(Foqz) = x at the junction points
near go and #(F1q,) = y at the junction point opposite go in V', where x and y are
to be determined (see Figure 1.3.1). Then

(1.3.16) E\(i1) =2(x — 1)?+2x2+2)? +2(x — y)*

is to be minimized. By calculus we set the x and y derivatives equal to zero, to
obtain the pair of linear equations

4x=14+x+y,

1.3.17
( ) 4y =2x.

Note that these equations express the mean value property that the function value
at each of the junction points is the average of the function values of the four
neighboring points in the graph. The solution x = %, y= % is clear by inspec-
tion. By symmetric we would get the same answer if we put the value 1 at any
of the boundary vertices. Also, since we are minimizing a quadratic function, the

minimizing equations are linear. So if the initial values of # on Vj are a, b, c, then

the harmonic extension # satisfies the following “% — % rule”:
2 2 1
1.3.18 =—-a+-b+—
( ) u(z) 5a + 5 + 50
1
X X
0 y 0

Figure 1.3.1 Values of & on V.
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b X C

Figure 1.3.2 Values on V.

if z is the junction point between the vertices where u takes on the values a and b.
Written this way, the harmonic extension will satisfy (1.3.18) on any cell of any level.

A more direct approach is to label the values on the vertices of V) as in
Figure 1.3.2 and minimize E; as a function of x, y, z. The derivative equations
yield the mean value equations

4x =b+c+y+z,
4dy=a+c+x+z,
4z=a+b+x+y.
Adding these equations yields
x+y+z=a+b+c,
SO
Sx=b+c+x+y+z)=b+c+(@+b+c),

and so on.
Finally, we need to compute the renormalization factor. For the function in
Figure 1.3.1 withx = 2 and y = 1, we find

2\? 2 1)\* 2 2 1 2
E=2(1-2 2(2 -2 Z_0) +2(=-0
1 (@) 2(1 5) + (5 5) +2(5 >+ (5 )

_184248+2 6

25 5
so the choice r = 2 yields

(1.3.19) E(@) =r Y E\(i1) = Eo(u).

A little more work shows the same is true for the harmonic extension in the general
case in Figure 1.3.2. Of course, a trivial remark is that the problem of minimizing
the renormalized energy & is equivalent to minimizing E, with the same function
u achieving the minimum.

The same idea applies to the harmonic extension from V| to V5, and in general
from V,, to V4. Suppose the values of u are given on V,,. Any new point in
Vus1 (not in V) belongs to a unique m-cell F,, K with |w| = m. The total energy
E,, ;1 (') for any extension is simply the sum of contributions from each cell F, K,

Eni(u) =Y (' (FyFoqo) —u'(FyFoq))*+---= Y Ey(u'oF,),

|w|=m [wl=m

’
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and each contribution is just the energy E; of u’ o F,,. So the global minimization
problem is just the union of 3” local minimization problems of the sort we have
just solved. So the “% — % rule” (1.3.18) continues to hold on each m-cell for the
harmonic extension, and the renormalization factor is again r = % Altogether, if

we define

5

then this renormalized energy remains unchanged under harmonic (minimum
energy) extension, so it must go up for any extension:

(1.3.21) Eow) < &) <&u)--- .

(1.3.20) En(u) = (é)_ Ey(u),

In the next section we will take the limit of this sequence.
To summarize what we have found so far: Given a function u on V,,, the har-
monic extension u to ¥, may be characterized in three ways:

(i) it minimizes &,, (&) at the value &, (u);
(ii) at each new point x € ¥, \ V, t(x) is the average of the values at the
four neighboring points in V,,,1;
(>iii) it satisfies the Y3 — % rule” at the new points in V11 \ V.

We may extend the equality in (i) to the bilinear form: If &, v are the harmonic
extensions of u and v, then

(1.3.22) Emv1(U, V) = Ep(u, v)

by the polarization identity (1.3.3), since harmonic extension is a linear transfor-
mation (from (iii)). As in the case of /, we can say more.

LEmMMA 1.3.1 Let u, v be defined on V,,, let u be the harmonic extension of u, and
let V' be any extension of v to V1. Then

(1.3.23) Emp1(@, V) =&, (u,v).

Proof: Because of (1.3.22) it suffices to show &, 11 (&1, v"") = 0 for v” = v’ — 0. Note
that v” vanishes on V,,. From the definition,

Epy1 (i, 0") = Y (@(x) =@ ()" (x) =" ().

X~y

m+1

Now collect all the terms that contain v”(x) for a fixed x. If x € V}, then v”(x) =0,
so these terms contribute 0. But if x € V., then v”(x) multiplies

(1.3.24) > Gix) —u(y)),

y~x

m+1

and this vanishes by the mean value condition (ii). So E,,+; (&, v”) = 0 and hence
Enrr1(@,v")=0. O

Let’s look at the “% - %” rule more closely. It says that the value at any inside

point is a weighted average of the values of boundary points. The weight is higher
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at the boundary points closest to the inside point, as is to be expected. I don’t know
of any explanatory argument for the exact values of the weights; they come from
the computation. In Section 1.5 we will give another derivation for the value r = %,
but it will also be the result of a different computation.

We define a harmonic function 4 to be one that minimizes &,, at all levels for the
given boundary values on V. In other words, with A (qo), #(q1), h(g2) given, we
inductively find 4| y,,, from h|,, using the “5 — Z rule” This is a local extension
algorithm: If we want to zoom in to great depth in a small neighborhood, it is not
necessary to compute s on the whole gasket. Specifically, if we want to know the
values of 4 to level m + k on the cell F,,K for |[w| = m, we only have to compute
h on the cells F, K, Fy,u,K, Fuw,uw, K, ..., Fy K and then compute the values
of & in complete detail for k more levels, for a total of m + 3 steps, as compared
to 3™** steps for computing 4 on the whole gasket.

The space of harmonic functions, denoted H,, is three-dimensional. A simple
basis {ho, k1, h2} is obtained by taking 4 ;(g;) =1 and 4 ;(gx) = O for k # j. Cer-
tain properties of harmonic functions follow easily from the extension algorithm.
Although # is initially defined only on ¥, it is uniformly continuous and so extends
to a continuous function on K. It also satisfies the maximum principle: The maxi-
mum and minimum are attained on the boundary (and only on the boundary if the
function is not constant). In the next chapter we will show that harmonic functions
are exactly the solutions of the differential equation Ah = 0.

The renormalized energies &, (h) are the same for all m, in particular for
m =0, so

(1.3.25)  En(h) = (h(go) — h(g1))* + (h(q1) — h(q2))* + (h(g2) — h(qo))*.

In particular, &, (h) > 0 if 4 is nonconstant. Of course, if we start with 4 constant on
Vo, then it remains constant on V,, and it has zero energy by (1.3.25). In particular,
ho+h +hy=1.

It is convenient to represent the harmonic extension algorithm by a set of three
matrices Ao, A1, A> that describe how the boundary values change as we move
from a cell of level m to its three subcells of level m + 1. That is,

(1.3.26) hl gy, = Aihly,
if we think of each set of 4-values as a 3-vector, and more generally
(1.3.27) hlr, v, = AihlF,v,-

Indeed, (1.3.27) is just (1.3.26) applied to the function 4 o F;,, which is also a har-
monic function. It is easy to see that

(1.3.28)
100 3 Pyl
=2 2L a=[o 1o a4=|1z:2
2 1 2 1 2 2
5 5 3 5 5 3 0 0 1

Another way of looking at it is that 4; is the matrix that represents the linear
transformation 4 — h o F; with respect to the basis {hg, 41, h2}. Using the notation
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Ay =4y, Aw,Aw,, we have
(1.3.29) hlg, vy = Auwhly,

(if you are wondering about the correct order in the product, work out the case
m = 2). It is important to understand that this is all there is! Unlike the case of
the interval, there is no other description of harmonic functions. In principle it
should be possible to obtain any desired information about harmonic functions from
(1.3.29). In practice this may require a lot of work!

The individual matrices A4; are easy to understand. Each has eigenvalues 1, %, %
The eigenvector associated to 1 is the constant, but the eigenvectors associated to
the other eigenvalues vary with the choice of i. For example, for 4, the eigenvectors
are hy + hy and A, — h; for eigenvalues % and %, respectively. If we denote by Ry
the reflection symmetry that fixes gy and interchanges ¢, and g, then h; + A3 is
symmetric and A, — A, is skew-symmetric under Ry. If 4 is a harmonic function
that vanishes at g, then it is a linear combination of 4, + A, and A; — h, (write
h as the sum of its symmetric and skew-symmetric parts). These functions have
different decay rates as we approach go. Specifically, on the m-cell Fj' K, hy + h;
is 0((%)"’) and h; — hy is O((é))’”). A generic harmonic function vanishing at
qo will have a nonzero symmetric part, so it will decay 0((%)"’). To obtain the
faster decay rate we have to choose a multiple of /#; — k. In the next chapter we
will see how to distinguish these cases by means of normal derivatives. The fact
that the middle eigenvalue % coincides with the renormalization constant » is no
coincidence. The fact that é is the smallest eigenvalue and 5 is the renormalization
constant for the Laplacian is a coincidence. The numerology of these eigenvalues
will have interesting consequences.

EXERCISES

1.3.1. The matrices A; are invertible. Compute A, ! explicitly. Use these matrices
to show how a harmonic function is uniquely determined by its values on
the boundary of any given m-cell.

1.3.2. Consider the restriction of a harmonic function to the line segment in SG
joining gqo to g, and parametrize this segment by the unit interval in the
obvious way. Find explicit formulas for h(}t) and A( %) as a linear combi-
nation of 4(0), h(%), h(1). Show that this algorithm localizes, so the values
of h on all dyadic points in the interval (vertex points in the segment) are
determined by A(0), ~(3), h(1).

1.3.3.* Show that the restriction of 4 to this segment can have at most one local
extremum.

1.3.4. Consider the two-dimensional space obtained from # by factoring out the
constants. Choose a basis for this space and find explicit 2 x 2 matrices
A; that represent the transformations 4 — A o F; with respect to your basis.
Note: There is no basis that is symmetric with respect to the dihedral group,
so the result will not be as nice as (1.3.26), although each matrix A; will
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have eigenvalues %, % and can be made symmetric if the basis is chosen
appropriately.
1.3.5. Note that for a nonconstant harmonic function,

2
Exh)=r') Eo(ho F)
i=0

gives a decomposition of the energy of / into parts of the energy »~!&y(h o
F;) coming from each of the cells F; K. Show that it is impossible to find 4
for which all these values »~!Ey(h o F}) are equal. More generally, describe
all possible ways that the energy can be split.

1.3.6. Let Osc( f, A) denote the difference between the maximum and minimum
values of f on A. Show that for harmonic functions Osc(k, F;K) < %
Osc(h, K), and more generally

3 m
Osc(h,FwK)s(g) Osc(h, K) if |lw|=m.

Use this to deduce that 4 on ¥, is uniformly continuous.
1.3.7. Show that the eigenvalues of 4,, for |w| = m are 1, A;, A, where AjA; =

(—235) N and also
5 ! 2 5 '

(Hint: Use the results of Exercise 1.3.4. The symmetry of 4; implies the
upper bound.)

1.3.8. Show that &, (u?) < 4M?*E,, (u) if |u| < M. Prove a similar bound for
Em(uv) in terms of &, (u), £, (v) and upper bounds for  and v.

1.3.9.* Partition the edges of the graph I',, into three types, horizontal, slanting
right, and slanting left, and similarly write £,(h) as a sum of three
“directional” energies &, (h) = EP (h) + EP (h) + EP (h) by restricting
the sum defining &,, to each type of edge. For harmonic functions 4, show
that £ (h) converges to 3E(h) asm — oo, fori = 1,2, 3.

1.3.10. Show that

ho o F; ho
h] o E =A;k h]
hy o F; hy

1.4 ENERGY

In the previous section we constructed (for K = I or SG) a sequence of energies
&Emn on I'y, such that &, (v) is increasing (nondecreasing) for any function u defined
on V,. It makes sense to define

(14.1) Eu) = limooé',,,(u),

allowing the value +oc0. Moreover, it is clear that £(u) = 0 if and only if u is
constant. We say u € dom& (u belongs to the domain of the energy) if and only
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if £(u) < oo. We also say that u has finite energy. The definition of energy only
involves the values of u on V,, and we would really like to think of u as a function
on K. We will see later that if » has finite energy then it is uniformly continuous
on V,, hence it has a unique continuous extension to K. By the way, this is not true
in Euclidean spaces or manifolds of dimension 2 or more, so the graph approxima-
tion method does not work in those contexts.

In addition to showing that dom £ C C(K), we will show that dom & is dense
in C(K), so that there exists an adequate supply of functions of finite energy. It
is clear from the previous section that harmonic functions have finite energy, and
an easy extension of this idea is that piecewise harmonic functions (start with any
values on ¥V, for some fixed m’ and extend harmonically for m > m’) also have
finite energy. In fact, we will show that piecewise harmonic functions are dense,
both in C(K) and in dom € in an appropriate sense.

Let u be a function of finite energy. Then &, (u) < E(u), soif x5 yforx, y eV,
we have 7" (u(x) —u(y))? < En(u) < E(u) since r ™ (u(x) — u(y))? is a summand
in &, (u). This means

(14.2) lu(x) —u(y| < r"Ew)'>.
This is already a statement of continuity. Now consider a chain of points x,,,
Xm4ls-+s Xmek SUCh that Xy, j € Vipyjand xpmy; ~ Ix,,,+j+1. Then we have
m+j+
m/2

[U(xm) = UEmip)] < F"PA 4724 EW)2 < Ew)'?

—1—r12

by adding up the estimates (1.4.2) along the chain of edges. From the geometry of
K itis easy to see that if x, y € V, belong to the same or adjacent m-cells, then we
can connect x to y by at most two such chains, so

rm/? 12
7 _rx/zg(”) .

Not only is (1.4.3) a statement of uniform continuity, it is also a Hélder condition.
In the case of the interval, if |x — y| < zl,”, then x and y belong to the same or

adjacent m-cell. Since r = %, (1.4.3) says

(1.4.3) lu(x) —u(y)| <

(1.4.4) [u(x) —u(y)| < Mlx — y|'/2.

(This is the optimal Hélder condition in the Sobolev embedding theorem for H I
which may be identified with dom &; see the exercises.) In the case of SG we
also get a Holder condition for the Euclidean metric with a strange exponent,
log(g)/ log2. In Section 1.6 we will introduce a more natural metric on SG, and
with respect to this metric the Holder exponent will again be %

For the rest of this section, all functions will be assumed to be continuous and
defined on all of K.

LEMMA 1.4.1 Letu,v € domE. Then
(1.4.5) lim &, (u,v) =&, v)
m— 00

exists and defines an inner product on dom £/ constants.
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Proof: We begin with the polarization identity

(1.4.6) Em(u,v) = ‘—ll(fm(u+v)—5m(u+v))

at level m. Since the right side of (1.4.6) has a limit, so does the left side. The usual
properties of an inner product, except that £(u) = 0 may occur, follow easily. Since
& (u) = 0 implies that &, (#) = 0, which implies that u is constant on V,, for all m,
it follows that u must be constant. By factoring out by the constants, we obtain a
true inner product. O

THEOREM 1.4.2 dom E/constants forms a Hilbert space with inner product (1.4.5).

Proof: It remains to show completeness: Every Cauchy sequence converges. It is
convenient to identify dom £/ constants with the space E={uedomé: u(qo) =0}.
Let {u,} be a sequence in € such that £(u, — u,’) — 0as n, n’ — oo. Then for fixed
m, En (U, —uy) — 0 also, since &, (u, —uy) < E(u, —u, ). It follows easily that

lim u,(x) exists for each x € V,,,
n—>oo

so we may define u on V, as this limit, and moreover
1.4.7) Em(uy —u) = lim &, (u, —uy).
n’—o00

By taking n large enough, the right side of (1.4.7) may be made as small as desired
independent of m, so £(u, —u) — 0 as n — oo. O

Having to factor out by the constants is a minor nuisance. We will say u, — u in
energy if £(u, —u) — 0 and also u,, — u uniformly (it suffices to have u, — u at
a single point in view of (1.4.2)).

DEFINITION 1.4.3 The space S(Ho, V) of piecewise harmonic splines of level
m is defined to be the space of continuous functions such that u o F;, is harmonic
for all |lw| =m.

It is easy to see that S(Ho, V) is contained in dom & and is a finite-dimensional
space of dimension #V,,. All such functions are obtained by specifying the values
of u on V,, arbitrarily and then extending harmonically to V,, for each m’ > m.
Clearly £(u) = &, (u) for these functions.

THEOREM 1.4.4 Any function u € C(K) may be approximated uniformly by a
sequence u, € S(Ho, V), with u, |V = u|V . Moreover, ifu € dom€& then u,, con-
verges to u in energy.

Proof: Given ¢ > 0, we can find m such that Osc(u, F,, K) < ¢ for all w with
|w| = m. Then since uy, |, =u|, we also have Osc(um, F,,K) <&, s0
[tm (x) —u(x)| < ttm (X) — tm (Fuqo) | + [um (Fuqo) — u(Fuqo)|
+|u(Fy(q0) —u(x)|
<2eforx € F,K,

SO [|tm — tlloo < 2e.
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Next suppose u € dom &. Then &, u) = En(um) / Ew). Also E(u, uy) =
EmW,upy) =Ey(u,) by Lemma 1.3.1. So

Ew—un)=EW)—2EW, up) +Eup) =EW) —En(uy) — 0.

The next result expresses the self-similarity of the energy.

THEOREM 1.4.5 Ifu € dom& then uo F; € dom€& for all i, and
(1.4.8) Ewy=)_r'EwoF).

Proof: 1t is clear from the definition that

Enii@) =) r ' Eu(uoF).

Taking the limit we obtain (1.4.8), and if the left side is finite then each term on the
right must also be finite. O

Of course the same identity holds for the bilinear form £(u, v) and for sub-
divisions
(1.4.9) K= U F,K
weP

with ! replaced by r 1!, for any partition P:

(1.4.10) Ewy= Y r"EwoF,).
weP

Another way of saying this is that we can create a function of finite energy on K by
gluing together finite energy functions on cells F,, K provided the functions match
at junction points.

The additivity in (1.4.10) suggests that we could think of energy as a measure.
More precisely, define a measure v, by

(14.11) v (FyK)=r""EWwo F,).

Equivalently, v, (F,, K) is obtained as a limit of

(1.4.12) Yo —u(»),
x~y

where the sum is restricted to those edges lying in F, K. It is easy to check that
all the conditions for a regular measure are satisfied except strict positivity (for a
probability measure we would need £(u) = 1). Then

(1.4.13) Ew) =1, (K) = / ldv,.
K

An interesting difference beween / and SG is that on /, the energy measures are
absolutely continuous with respect to the standard measure, but on SG they are not.
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In fact they are singular—roughly speaking, they concentrate mass too much in
neighborhoods of junction points. This result was first proved by Kusuoka. A hint
of why this is so is given in Exercise 1.3.5.

Here are a couple of simple properties of energy: The Markov property

(1.4.14) E([u]) < E(u) for [u] = min{1, max{u, 0}}

follows from the corresponding property for &,. Also, dom £ forms an algebra
under pointwise multiplication. We leave the verification to the exercises.

EXERCISES

1.4.1. Show that v, (F, K) < r'"!€(u) and so the continuity condition (1.2.3) holds
forv,.

1.4.2. Show that dom € is an algebra, and find an estimate for £(uv) in terms of
E), E(v), llulloo, and [|v]lco-

1.4.3. Let R be one of the reflection symmetries in D3, and suppose u, v € dom &
are, respectively, symmetric and skew-symmetric with respect to R. Show
that £(u, v) =0.

1.4.4. On SG choose an orthornormal basis {], h,} for 7 /constants with respect
to t[le energy inner product, and define the Kusuoka measure v = vy, + v,.
Show that this measure is independent of the choice of orthonormal basis.

1.4.5. Show that if u € C'(I) then u € dom & and £(u) = [, (u'(x))%dx.

1.4.6.* On [, show that dom £ may be identified with the Sobolev space H I with
E(w) = fol (' (x))*dx, where now u’ is the distributional derivative and the
integral is a Lebesgue integral.

1.4.7. Consider the skew-symmetric function # on SG defined by u(Fé‘ q1) =3k,
u(Fé‘qz) = —3*, and extended to be harmonic on every cell not containing
qo (see Figure 1.4.1). Show that u has infinite energy, but # is harmonic in
the complement of go (u satisfies the mean value condition at level m for
any vertex in ¥, \ ¥y not adjacent to go).

1.4.8. Show that if u € S(Ho, V») and v € dom & then E(u, v) = &, (u, v).

1.4.9. (a) Show that the energy is local, meaning u - v = 0 implies £(u, v) = 0.
(b) Show that the energy is strongly local, meaning that £(u, v) =0if v is
constant on the support of u.

Figure 1.4.1
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1.5 ELECTRIC NETWORK INTERPRETATION

In Section 1.3 we began by considering a notion of energy on a general finite graph
G. More generally, suppose we have a positive function ¢, defined on the edges
x ~ y of the graph (we call this a network). Then we may consider

(15.1) E@)=Y_ coy(u(x) —u(y)’

x~y

as an associated energy. We will interpret ¢, as conductances and the reciprocals
ryy = 1/cx, as resistances. We imagine an electric network where each vertex of
G is a node and the edges of G are resistors connecting the nodes with the given
resistances. The values of u are interpreted as voltages at the nodes. A current
of amperage (u(x) — u(y))/rvy = cxy(u(x) —u(y)) will flow through each resis-
tor, producing an energy of c,(u(x) — u(y))? from each resistor, leading to the
total energy (1.5.1). Note that we have to do something (such as attach appropriate
strength batteries) to keep the nodes at the specified voltages u(x).

We could also drop the reference to the graph structure of G and require c,,, > 0
to be given as a symmetric function on all distinct pairs x, y in V. We then define
x ~ y if and only if ¢y, > 0. If ¢,,, = O then the resistance is infinite, and it won’t
change the network to connect x and y by an infinite resistor. When we define the
restriction of a network in what follows, we are essentially using this approach to
define the edge relation.

We might also consider what happens if we impose voltages u(x) at only some
of the nodes (V) and allow the voltages at the other nodes (V") to settle into values
that, according to electric network theory, will minimize the energy. For example,
suppose the network has three nodes x, y, z and two edges x ~ y and y ~ z. If we
set voltages u(x) and u(z) at the extreme nodes, then the value u(y) at the middle
node that minimizes

(1~52) ny(u(x)—u(y))2+cyz(u(y)_u(z))2

is easily seen to be

(1.5.3) u(y) = M’
Cxy+Cy:

and this yields the value

(1.5.4) (ﬂ) (u(x) —u(z)? =

cxy+cyz

1 2
(u(x) —u(2))

er ryZ

for (1.5.2). Note that this is the same value as the energy for a network with two
nodes x and z connected by a resistor of resistance 7y, +r,.. This is a familiar rule:
Resistors in series add their resistances. The rule that resistors in parallel add their
conductances is more or less built into the energy formula (1.5.1).

It seems reasonable that whatever the choice of nodes V', we could construct a
network on ¥’ that mimics the energy on the original network for any choice of
values u(x) for x € V', Any such network will be called a restriction of the original
network to ¥/, and the original network will be called an extension of the network
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on V'. We will not be concerned here with abstract existence and uniqueness the-
orems for restrictions, since in all cases of interest we will compute restrictions
explicitly.

From this point of view, the solution of the renormalization problem relating the
energies & and &; on the graphs Iy and I'; for SG is the same as starting with a
network on I'; with all resistance equal to » and showing that the restriction to Vj is
the graph 'y with all resistances equal to 1. Here we will re-derive the answer in a
step-by-step fashion using four basic principles of electric network theory, applied
to pieces of the graphs. We have already mentioned the first two, resistors in series
and resistors in parallel. The others are “pruning” and the “A — Y transformation.”

LEMMA 1.5.1 Suppose the deleted vertices V" are connected only to each other
and to a single vertex xy in V'. Then the restriction network is obtained by retaining
all the edges connecting nodes in V' with the same resistances, and the minimum
energy function has u(y) = u(xg) for every y e V".

Proof: Given u on V', the choice u(y) = u(xq) for all y € V" adds zero to the sum

D eoplulx) —u()’

x~y
x,yev’

and so clearly minimizes energy. g
LEMMA 1.5.2 Consider a Y-shaped network with nodes x, y, z, w and edges just

connecting x, y, z to w, and resistances ryy, vy, rsw. Then the restrictionto V' =
{x, y, z} is a A-shaped network with resistances ry,, ry;, r:x provided that

(1.5.5) {’*F%’ =" r = R
for R= rX,V+ryz+rzx.
Moreover, the energy-minimizing value is
Cxwl (X) + ¢yt () + cput(2)
Cxw +cyw +Co :

(1.5.6) u(w) =

In particular, if rey =71, =r;; =a then vy, =ry, = ry = a/3, and u(w) =
3 @(x) +u(y) +u(2)).

Proof: The Y-network energy is
(1.5.7) Cow () = u(W))? + €y (U(y) — u(W))? + €2y (u(2) — u(w))>.

It is clear that to minimize this we must choose u(w) by (1.5.6). When we substi-
tute (1.5.6) into (1.5.7) and simplify we obtain

(1.5.8) Coy(u(x) —u(3))? 4y U(y) — u(2))* + c2x (u(2) — u(x))*

for certain coefficients. After some messy algebraic manipulations we obtain
(1.5.5). The details are left to the exercises. The special case of equal resistances
is easy. O

Now we analyze the restriction of the I'-network for SG with equal resistances.
To simplify the computation we set the resistances equal to 1, since the result is
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5/3
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Figure 1.5.1

clearly linear in the resistance. We obtain the network in Figure 1.5.1(a), with the
Vo vertices marked by larger dots. We observe three A-shaped subnetworks, so we
apply the A —Y transform to each, to obtain Figure 1.5.1(b). We see three sets of
resistors in series, so we combine them to obtain Figure 1.5.1(c). Another A-shaped
subnetwork appears, so we use A — Y to obtain Figure 1.5.1(d). Again there are
three sets of resistors in series, so we combine to obtain the Y-shaped network in
Figure 1.5.1(e). Finally, we do the inverse of the A — Y transform to obtain the
network on ¥y in Figure 1.5.1(f). Keeping track of the resistances along the way,
we see that we have multiplied by % so if we started with r = % we would end
up with resistance 1. This confirms our calculation of the energy renormalization
factor.
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To obtain the harmonic extension algorithm we start with values of u at the
vertices in Figure 1.5.1(f) and run the process backwards, using (1.5.3) and (1.5.6)
to fill in the values when we add vertices. We show the results in Figure 1.5.2. For
simplicity we just do the function A, but by symmetry the analogous computation
holds for 4; and 45, and by linearity for all harmonic functions. Thus we rediscover
the “% - % rule”.

Which method is easier? The first method involves solving a system of linear
equations. The second method gives a step-by-step procedure that leads to the
solution. Of course, Gaussian elimination also gives a step-by-step procedure that
leads to the solution, but it is not the same procedure. In this case the system
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of equations was easy to solve, so the first method was simpler. In other exam-
ples it seems that network manipulation is simpler. But not all networks allow
simiplification using the few rules we have at hand. So, from a practical point of
view, network manipulation is a tool to be used sparingly, though sometimes to
great effect. From a theoretical point of view, it motivates and explicates the notion
of effective resistance metric that we discuss in the next section.

EXERCISES

1.5.1.* Show that the restriction of a network to a subset V'’ C V' defines a unique
network on V',

1.5.2. Suppose V"' C V' C V. Given a network on V', show that its restriction to
V' is equal to the restriction to ¥ of the restriction to V.

1.5.3. Supply the details of the proof of Lemma 1.5.2.

1.5.4. Show that a network is connected if and only if the only functions of zero
energy are the constants. Use this to show that the restriction of a connected
network is connected.

1.5.5. Let x; < x; < --- < x, be points on the line, and define a network with
xj~xjyrandry y  =x;41 —x;. Determine the restriction of this network
to any subset of {x;}.

1.5.6. Invert (1.5.5) to express rx,, ¥z, Fzx in terms of ryy, Fyu, 72y

1.6 EFFECTIVE RESISTANCE METRIC

Given any network, we can define the effective resistance R(x, y) between any two
points as the resistance between them when we restrict the network to just those
two points. This is exactly the resistance we would measure if we attached a bat-
tery to the two points and measured the current flow. It should not be confused with
the resistance of an edge connecting x and y. Such an edge need not exist! If we
look at the definition of restriction of networks, we find the following formula:

(1.6.1) R(x,») '=min{Ew) :u(x)=0 and u(y)=1)}.
Another formulation is that R(x, y) is the minimum value of R such that
(1.6.2) lu(x) —u(»)|* < RE(u) forall u € domé&.

We note that the function achieving the minimum in (1.6.1) is the function that is
harmonic in the complement of the points x and y. For example, if the network is
')y for K = I, then (assuming x < y) the function u is 0 on [0, x], 1 on [y, 1], and
linear on [x, y]. Clearly

E(u)—é‘(u)—/y ! dt-—l
e e =0T y—x’

s0 R(x, y) = y—x, the usual distance on /.
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This leads us to hope that effective resistance will provide us with a natural (or
intrinsic) metric on SG. What do we mean by this? The simplest interpretation is to
first define R(x, y) for points in V,, using the network I';,. Then we can extend it
to V,, since it clearly is independent of m (once m is large enough that x, y € V).
It is not difficult to see that R(x, y) is uniformly continuous in x and y, so we may
extend it to SG x SG, and in fact (1.6.1) still holds. But is it a metric?

The claim is that effective resistance is a metric for any network. The only non-
trivial condition to check is the triangle inequality. So given three points x, y, z,
consider the restriction of the network to {x, y, z}. By Exercise 1.5.2, the effective
resistances will be the same if we compute them with respect to this three-point
network. So we only have to check the triangle inequality for a A-network. (There
is also the trivial case when only two of the resistances are finite, where the trian-
gle inequality is an equality.) This is an easy exercise, but it becomes quite obvi-
ous by doing a A — Y transformation. On the Y-network, R(x, y) = ryy + 7y,
and so on, so

R(x, )+ R(y,2) =rew+Tyw+7yw +T2w > Few + 720 = R(x, 2).

Returning to SG, we know that effective resistance is a metric on V,,, hence on
V4, and by continuity on SG. We will soon see that it defines the same topology as
the Euclidean metric, but it is not metrically equivalent. We note that (1.6.2), which
may be written

(1.6.3) lu(x) —u(»)| < E@)'*R(x, y)'/? forall u € dom&,

says that functions on dom& are Holder continuous of order % in the effective
resistance metric.

It is extremely difficult to compute R(x, y), but it is rather easy to obtain approx-
imate values. First we note that if we can construct any function u satisfying u(x) =
0 and u(y) = 1, then this immediately gives us the lower bound

(1.6.4) Rx,y)=Ew™".

To find an upper bound we need to show that u(x) =0 and u(y) = 1 implies £ (u) >
a, as this implies

(1.6.5) R(x,y)<a™'.

In particular, suppose x, y € ¥, are neighboring vertices. Now we choose u = ¢ (",
the piecewise harmonic spline in S(Hy, V,,) with W;""(z) =4, fory,z€ V,. Then
we have u(x) =0 and u(y) =1, and E(u) = 4r™™ (or 2r~™ if y is a boundary
point). So (1.6.4) says

1
(1.6.6) R(x,y) > Zr”’.
On the other hand, #(x) = 0 and u(y) = 1 implies £(u) > &, (u) > r™™, s0 (1.6.5)
says
(1.6.7) R(x,y) <r™.

Together, the two estimates show that R(x, y) = r™. The same reasoning extends
to other points.
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LEMMA 1.6.1 There exist positive constants ¢, and c; such that
(a) if x and y belong to the same or adjacent m-cells, then

(1.6.8) R(x,y) <cr'™;
(b) if x and y do not belong to the same or adjacent m-cells, then
(1.6.9) R(x, y) = cpr™.

Proof: In case (a) we construct chains of points joining x and y as in the beginning
of Section 1.4. Using the triangle inequality and estimate (1.6.7) for pairs of con-
secutive points in the chain, by summing a geometric series we obtain (1.6.8). In
case (b), let zg, z;, z, denote the boundary points of an m-cell containing y. Then
u=y" + ™ + ™ is identically 1 on the m-cell containing y, but u(x) = 0.

20 1

Also E(u) = 6r~" (or 4r ™ if the cell intersects V), so (1.6.4) implies (1.6.9). O

It is easy to see that this means
5
(1.6.10) R(x,y) ~|x—ylP forﬁ:logg/logZ.

This shows that the resistance metric is topologically equivalent, but not metrically
equivalent, to the Euclidean metric. Since 8 < 1, it follows that distances in the
resistance metric are much larger than in the Euclidean metric. In particular, there
are no rectifiable curves in this metric. It seems very unlikely that SG in this metric
can be embedded in a Euclidean space of any dimension.

There is no exact scaling identity relating R(x, y) and R(F;x, F;y). We can say
that, roughly speaking, each F; acts like a contraction of ratio r.

EXERCISES

1.6.1. Show the equivalence of (1.6.1) and (1.6.2).

1.6.2. Prove that R(x, y) is uniformly continuous on ¥, x V, in SG, and (1.6.1)
holds on all of SG x SG.

1.6.3. Compute the effective resistance on a A-network directly (without using the
A —Y transform), and show that it is a metric.

1.6.4. Compute R(x, y) exactly on V| x V.

1.6.5. Give the details of the proof of Lemma 1.6.1(a).

1.6.6. Prove (1.6.10) from Lemma 1.6.1.

1.6.7. Show that u{x : R(x,y) <r}~r?ford = 101;(2%?3)’ where u is the standard
measure. This means that SG as a metric-measure space, with metric R and
measure i, has dimension d.

1.7 NOTES AND REFERENCES

Most of the material in Sections 1.1, 1.3, and 1.4 is from [Kigami 1989], where
it was developed for SG and its higher dimensional analogs. The fact that it also
has something to say about / is a pleasant afterthought. Although it doesn’t say
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anything new, it gives an amazingly simple characterization of the Sobolev space
H', no Lebesgue integration theory or Schwartz distribution theory is needed, just
a plain calculus-type limit. Of course, to show the equivalence of H' and dom¢& in
Exercise 1.4.6 requires all this machinery.

The definition of self-similar measure in Section 1.2 is from [Hutchinson 1981].
We take a very naive approach to measures in general because we only have to
integrate continuous or piecewise continuous functions, so we can use a Riemann-
type integral. The positivity (1.2.1) and continuity (1.2.3) conditions are not part of
the usual definition of measure, and we have made the ad hoc definition of “regular”
to describe them. Occasionally we have to consider more general measures in the
sequel.

The topological rigidity of SG (Exercise 1.1.6) was first noted in [Bandt and
Retta 1992]. The fact that SG is not topologically rigid (Exercise 1.1.7) can also
be understood from the Apollonian packing model. See [Mumford et al. 2002] for
beautiful pictures of this.

Exercise 1.3.5 is a warmup for the singularity of energy measures [Kusuoka
1989]. Exercise 1.3.9 is from [Stanley et al. 2003]. The singular harmonic function
in Exercise 1.4.7 was first noted in [Dalrymple et al. 1999].

The electric network ideas in Sections 1.5 and 1.6 come from [Kigami 1994a].
See [Doyle and Snell 1984] for the general theory of networks. See [Fukushima
et al. 1994] for the general theory of Dirichlet forms.

It is possible to identify dom &€ with a certain Lipschitz-type function space deter-
mined by the embedding of SG in the plane, as shown in [Jonsson 1996]. This is one
result that contradicts my assertion that the standard embedding of SG in the plane
is irrelevant for our analytic theory. Nevertheless, it seems to be a kind of isolated
result, since other natural function spaces on SG are unrelated to the embedding
[Strichartz 2003b].



Chapter Two

Laplacian

2.1 WEAK FORMULATION

We are now in a pogition to define, in a few lines, 2 Laplacian A on both our self-
similar spaces, / and SG, via the same weak formulation. For this we require only
two ingredients: the bilinear energy £(u, v) and a regular probability measure u.
For the most part we will take u to be the standard self-similar measure, but it is
interesting to observe that we are free to make other choices. We will write A,
to denote the dependence on the choice of measure and A if u is the standard
measure, in which case we call A the standard Laplacian. The idea behind the
definition is the integration-by-parts formula. A student emerging from a standard
calculus course is likely to remember integration-by-parts as just one in a bag of
tricks for evaluating recalcitrant integrals; and yet, it turns out to be one of the most
versatile tools in all of modern analysis.
Suppose v is a C? function on / that happens to vanish at the endpoints. Then

1 1
2.1.1D) / u"(x)v(x)dx = —/ u' (x)v'(x)dx
0 0

is valid for u € C?, but actually also works conversely: If u is C' and there is a
continuous f such that

1 1
(2.1.2) / fx)v(x)dx = —/ u' (x)v'(x)dx
0 0

for all such v, then # € C? and #” = f. Notice that we have avoided the messiness
of boundary terms by assuming v(0) = v(1) = 0. Don’t worry, we’ll come back to
the boundary terms in Section 2.3. For now we can rewrite (2.1.2) as

1
(2.1.3) S(u,v):—/ fx)v(x)dx forall v e domyE
0

(recall that the subscript 0 means exactly that v vanishes on the boundary). So
integration-by-parts tells us that # € C? and «” = f if and only if # € dom £ and
(2.1.3) holds. (A minor technical point: # € dom € is actually weaker than u € C'.)
We leave the proof to the exercises.

The following definition makes sense for X = I or SG.

DEFINITION 2.1.1 Let # € dom& and let f be continuous. Then # € dom A, with
Ayu= fif

2.1.4) E(u,v) = —f fvdu for all v € domg€.
K
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(Note that the positivity condition (1.2.1) is needed in order for (2.1.4) to uniquely
determine f.) More generally, if we only assume f € L?(du) and (2.1.4) holds,
then we say u € dom2 A, and A u = f.

This definition is the weak formulation. Later we will prove that there is an equiv-
alent pointwise formulation. One could just as well start with the pointwise formu-
lation as the definition and prove the above definition as a theorem. However, this
does not work for the broader class dom;: A ,. (We will mainly use this in situations
where f is piecewise continuous but has a few jump discontinuities.) Although the
weak formulation may seem artificial at first, it actually proves to be more useful
in the long run.

One source of confusion in the case K = [ is that (2.1.4) is an equation with two
distinct measures: on the left side the energy is always the integral fol u' (x)v'(x)dx
with respect to the standard measure, which may be different from the measure p
in the integral on the right side. (The actual meaning of A,u = f in the case of
K =1 and u a general measure is that as a distribution, dd—;u = fdu.) Of course,
when K = SG there is no integral on the left side of (2.1.4).

In order for a definition to be interesting mathematically, not only does it have
to be logically sound, but it has to hold in a sufficient number of cases. A priori,
it is not clear that there are any nontrivial functions in dom A . It is clear that
0 € dom A, with A0 =0, or more generally any constant function, and also that
dom A, forms a vector space of functions. But beyond that (at least for SG) we will
have to do some work. Eventually we will see that for every continuous function
S there exists # € dom A, such that A,u = f—this is about the best we could
hope for. To begin, we will show that dom A, contains harmonic functions #, and
A, h = 0. Note that this is true for all measures .

THEOREM 2.1.2 If h is harmonic, then h € dom A, and A,h = 0. Conversely,
ifu edomA, and A, u =0 then u is harmonic.

Proof: By Lemma 1.3.1, &, (h, v) is independent of m, so £(h, v) = Ey(h, v). But
&o(h, v) = 0 because v vanishes on the boundary. This shows A A = 0. For the
converse, we make a special choice of v. Given m and a point x € V,, \ ¥y, let (™
denote the piecewise harmonic spline in S(#o, V,,) satisfying ¥ " (y) = §,, for
¥ € V. Note that ™ € domoE because x ¢ Vo. Then €(u, ™) = 0 because
A,u = 0. But, again by Lemma 1.3.1 (reversing the roles of » and v), we have
Ew, ™) = E,(u, ™). However, the equation &, (u, ¥™) = 0 is exactly the
condition

D ) —u(y) =0

yyx
that u| , be harmonic. Since this is true for all m, « is harmonic. O

It might seem plausible that we could easily create other functions in dom A,
by passing to wider classes of functions related to harmonic functions. But this is
not so simple. For example, piecewise harmonic splines are not in dom A, this is
certainly clear for K = I. Another approach would be to try powers and polyno-
mials of harmonic functions; while this works for K = I, it turns out for SG that



