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Act 1 Finitely generated self-affine sets

Let X ⇢ Rd be compact and let I be a finite index set. An iterated function system (IFS) on X
is a collection of {�i : X ! X : i 2 I} of contractions.

Theorem [Hutchinson. Indiana Univ. Math. J. 1981]

There exists a unique compact non-empty set F
such that

F =
[

i2I

�i(F).

I F is self-similar, if �i is a similarity:

|�i(x) � �i(y)| = ri |x � y |

I F is self-affine if �i is an affine transformation:

�i(x) = Li(x) + yi

where Li 2 GLd(R) and yi 2 Rd

An IFS satisfies the open set condition if
there is a non-empty bounded open set U
such that

U ◆
[

i2I

�i(U)

with the union disjoint.

Theorem [Hutchinson. Indiana Univ. Math. J. 1981]

Let F be a self-similar set and let s be the
unique solution to

P
i2I rs

i = 1:

dimH (F)  dimB(F)  dimB(F)  s

with equality under the open set condition.

I Letting N�(F) denote the smallest number of sets of diameter at most � which cover F

dimB (F) = lim inf
�!0

log(N�(F))
� log(�)

and dimB (F) = lim sup
�!0

log(N�(F))
� log(�)

.

I dimH (F) = inf{s � 0 : Hs (F) = 0} = sup{s � 0 : Hs (F) = 1}

H
s (F) = lim

�!0
H

s
� (F) = lim

�!0
inf

8>>><
>>>:

X

j
|Uj |

s : {Uj } is a �-cover of F

9>>>=
>>>;
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Theorem [Falconer. Math. Proc. Camb. Phil. Soc. 1988]
and [Solomyak. Math. Proc. Camb. Phil. Soc. 1998]

Let F be a self-affine set and s be the value

inf

8>>><
>>>:

q 2 R>0 :
X

i1 ...in2I⇤
�q(Li1 . . . Lin ) < 1

9>>>=
>>>;
.

dimH (F)  dimB(F)  min{d, s}

with equality holding for almost all transla-
tion vectors yi , if kLik < 1/2 for all i 2 I.

The value s is called the affinity dimension
of the IFS, and is denoted by d(Li | i 2 I).

I For L 2 GLd (R), let ↵1(L) � · · · � ↵n(L) denote the singular values of L , and define the singular value function of L by

�r (L) =

8>><
>>:
↵1(L) . . .↵dre�1(L)(↵dre(L))r�dre+1 if 0 < r  d,
|det(L)|r/2 if r > d,

I When d = 2 we have �r (L) =

8>>>><
>>>>:

↵1(L)r if 0 < r  1,
↵1(L)↵2(L)r�1 if 1 < r  2,
|det(L)|r/2 if r > 2,
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Question Can one classify classes of self-affine sets for which Hausdorff and affinity
dimensions coincide?

Recall, I is a finite index set.

Theorem [Bárány, Hochmann and Rapaport. Invent. math. 2019]

Let F ⇢ R2 be a self-affine set generated by a finite iterated function system � = {�i : i 2 I}
and let Li denote the linear part of �i . If

I {Li : i 2 I} ⇢ GL2(R) generate a non-compact and totally irreducible group, and

I if � satisfies the open set condition with feasible open set U such that U \ F , ;

then dimH (F) = dimB(F) = min{2, d(Li | i 2 I)}.

Theorem [Rapaport. arXiv:2309.03985, 2023]

Let F ⇢ Rd be a self-affine set generated by a finite iterated function system � = {�i : i 2 I}
and let Li denote the linear part of �i . If

I Li = diag(ri,1, ri,2, . . . , ri,d) for all i 2 I and not all similarities and

I �j = {�i,j : i 2 I} is exponentially separated, where �i,j(x) = ri,j + yi,j ,

then dimH (F) = dimB(F) = min{d, d(Li | i 2 I)}.

I Non-compact means that not all of the maps �i are similarities. Under this assumption, total irreducibility is equivalent to
the property that no line, or union of two lines, is invariant under all of the Li .

I A finite affine IFS  = { : i 2 I} on X ⇢ R is said to be exponentially separated if there exist a constant c > 0 and an
infinite set Q ⇢ N such that ⇢( !1 . . . !n , ⌫1 . . . ⌫n ) � cn for all n 2 Q and distinct !1 . . .!n , ⌫1 . . . ⌫n 2 In , where, for
two affine maps ⌧1(x) = r1x + c1 and ⌧2(x) = r2x + c2,

⇢(⌧1 , ⌧2) =

8>><
>>:
1 if r1 , r2
|c1 � c2 | otherwise.



Act 2 Ininitely generated self-affine sets

Let X ⇢ Rd be compact and let I be a countable infinite index set. An iterated function system
(IFS) on X is a collection of � = {�i : X ! X : i 2 I} of contractions.

We define the limit set of an infinite IFS by

F =
[

(ik )k 2IN

\

k2N

�i1 . . . �ik (X).

Observe that

I
S

i2I �i(F) = F , and

I F is not necessarily compact.

A limit set is called self-affine, if �i is an
affine transformation for all i 2 I, namely
�i(x) = Li(x) + yi , Li 2 GLd(R), yi 2 Rd .

Theorem [Käenmäki and Reeve. J. Frac. Geom. 2014]

Let F be a self-affine limit set. If kLik < 1/2
for all i 2 I. For almost all translation vectors,

dimH (F) = min{d, d(Li | i 2 I)}

The dimension spectrum of an infinite IFS � is D(�) = {dimH (FJ) : J ⇢ I is finite}, where
FJ is the attractor of {�j : j 2 J}.

Theorem [Chousionis, Leykekhman and Urbański. Selecta Math. 2019]

The dimension spectrum of a conformal infinite IFS satisfying the open set condition and
bounded distortion property is compact and perfect.

I For L 2 GLd (R), let ↵1(L) � · · · � ↵n(L) denote the singular values of L , and define the singular value function of L by

�r (L) =

8>><
>>:
↵1(L) . . .↵dre�1(L)(↵dre(L))r�dre+1 if 0 < r  d,
|det(L)|r/2 if r > d,

I d(Li | i 2 I) = inf

8>>>><
>>>>:

q 2 R>0 :
X

i1 ...in2I⇤
�q(Li1 . . . Lin ) < 1

9>>>>=
>>>>;
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The dimension spectrum of an infinite IFS � is D(�) = {dimH (FJ) : J ⇢ I is finite}, where
FJ is the attractor of {�j : j 2 J}.

Theorem [Chousionis, Leykekhman and Urbański. Selecta Math. 2019]

The dimension spectrum of a conformal infinite IFS satisfying the open set condition and
bounded distortion property is compact and perfect.

Theorem [Jurga. Selecta Math. 2021]

The dimension spectrum of an irreducible affine infinite IFS satisfying the strong open set
condition, namely U \ F , ;, is compact and perfect.

I An IFS is irreducible, if the linear parts of the affine maps do not all preserve a common proper non-trivial linear subspace.



Act 3 Dimensionality results for infinitely generated non-irreducible planar self-affine sets

Motivated by the question what happens if we have a non irreducible infinite affine IFS and the
study of restricted digit sets of signed Lüroth expansions we studied the following class of IFSs.

p

1/2

1/3
1/4
1/5

Ap
0,2([0, 1]

2) A
p
1,2([0,1]2)

Let p 2 (0, 1) and (s, d) 2 {0, 1} ⇥ N�2

Ap
s,d : [0, 1]2 ! [0, 1]2

Ap
s,d(x) = Lp

s,d(x) +
 

sp
1

d�s

!

Lp
s,d(x) =

0
BBBBBB@
p1�s(1 � p)s 0

0 (�1)s

d(d�1)

1
CCCCCCA
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For p 2 (0,1) and J ⇢ {0,1} ⇥N�2 we
consider the limit set of {Ap

s,d : (s,d) 2 J}.
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Connections to Lüroth expansions

I Lüroth expansions

lim
n!1

h0
d1
. . . h0

dn
(0) =

X

n2N

dn � 1
Qn

i=1 di(di � 1)

1
2

1
3

1
4

1
5

1
6

h0
d(y) =

y + d � 1
d(d � 1)

d 2 N�2
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i=1 di(di � 1)

1
2

1
3

1
4

1
5

1
6

h1
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d 2 N�2
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study of restricted digit sets of signed Lüroth expansions we studied the following class of IFSs.

p

1/2

1/3
1/4
1/5

Let p 2 (0, 1) and (s, d) 2 {0, 1} ⇥ N�2

Ap
s,d : [0, 1]2 ! [0, 1]2

Ap
s,d(x) = Lp

s,d(x) +
 

sp
1

d�s

!

Lp
s,d(x) =

0
BBBBBB@
p1�s(1 � p)s 0

0 (�1)s

d(d�1)

1
CCCCCCA

For p 2 (0,1) and J ⇢ {0,1} ⇥N�2 we
consider the limit set of {Ap

s,d : (s,d) 2 J}.
Connections to Lüroth expansions
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n!1
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d1
. . . h0

dn
(0) =

X

n2N
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lim
n!1

h1
d1
. . . h1

dn
(0) =

X

n2N

(�1)n�1dnQn
i=1 di(di � 1)

I Signed Lüroth expansions

lim
n!1

hs1
d1
. . . hsn

dn
(0)

=
X

n2N

(�1)
Pn

i=1 si
dn � 1 + snQn
i=1 di(di � 1)



J = {(0,2), (1,2), (0,3)} p = 1/2

J = {(0,2), (1,2), (1,3)} p = 1/2

J = {(0,2), (1,2)} p = 1/2

J = {(0,2), (1,3), (0,4), (1,4), (0,6), p = 2/3
(1,6), (0,7), (1,7), (0,10), (0,12)}



Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

I dimH (F
p

J )  min
n
2, d(Lp

s,d | (s, d) 2 J)
o

I If there exists a non-empty finite alphabet J1 ⇢ J such that, for all J1 ⇢ J2 ⇢ J,
dimB(F

p
J2
) = d(Ap

s,d : (s, d) 2 J2), then

d(Ap
s,d : (s, d) 2 J)  dimB(F

p
J ) and d(Ap

s,d : (s, d) 2 J) = sup
J0⇢J finite

d(Ap
s,d : (s, d) 2 J0).

Examples for the lower bound on dimB(F
p
J )

I dimB(⇡1(F
p
J1
)) = dimB(⇡2(F

p
J1
)) = 1

For example when (0, 2), (1, 2) 2 J1

I dimB(⇡1(F
p
J1
)) = 1 and min{p, 1 � p} � (d � s)�1 for all (s, d) 2 J.

For example when p = 1/2, ⇡1(J) = {0, 1} and ⇡2(J) ⇢ N�3

Recall p 2 (0, 1) and for (s, d) 2 {0, 1} ⇥ N�2

Ap
s,d (x) = Lp

s,d (x) +
0
BBBB@

sp
1

d�s

1
CCCCA and Lp

s,d (x) =

0
BBBBBBB@
p1�s (1 � p)s 0

0 (�1)s

d(d�1)

1
CCCCCCCA

We set J to be an infinite subset of {0, 1} ⇥ N�2,

d(Lp
s,d | (s, d) 2 J) = inf

8>>>><
>>>>:

q 2 R>0 :
X

(s1 ,d1)...(sn ,dn)2J⇤
�q(Lp

s1 ,d1
. . . Lp

sn ,dn
) < 1

9>>>>=
>>>>;
,

and Fp
J denotes the limit set of {Ap

s,d : (s, d) 2 J}.



For (s, d) 2 J let as,d = p1�s(1 � p)s and bs,d = (d(d � 1))�1 and set

PJ(r) =

8>>>>>>><
>>>>>>>:

max
nP

(s,d)2J ar
s,d ,

P
(s,d)2J br

s,d

o
if 0 < r  1

max
nP

(s,d)2J as,dbr�1
s,d ,

P
(s,d)2J ar�1

s,d bs,d
o

if 1 < r  2
P

(s,d)2J(as,dbs,d)r/2 if r > 2

Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

d(Lp
s,d | (s, d) 2 J) = inf{r 2 R>0 : PJ(r)  1}

If ⇡1(J) = {0, 1}, then

d(Lp
s,d | (s, d) 2 J) = inf

n
r 2 [1, 2] : max

nP
(s,d)2J as,dbr�1

s,d ,
P

(s,d)2J ar�1
s,d bs,d

o
 1

o
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nP
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s,d ,
P

(s,d)2J ar�1
s,d bs,d

o
 1

o

Moreover, if (a)
P

(s,d)2J bs,d  1, (b) J = {0, 1} ⇥ I for some I ⇢ N�2, or (c) p = 1/2, then

d(Lp
s,d | (s, d) 2 J) = inf

n
r 2 [1, 2] :

P
(s,d)2J as,dbr�1

s,d  1
o
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Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

I dimH (F
p

J )  min
n
2, d(Lp

s,d | (s, d) 2 J)
o

I If there exists a non-empty finite alphabet J1 ⇢ J such that, for all J1 ⇢ J2 ⇢ J,
dimB(F

p
J2
) = d(Ap

s,d : (s, d) 2 J2), then

d(Ap
s,d : (s, d) 2 J)  dimB(F

p
J ) and d(Ap

s,d : (s, d) 2 J) = sup
J0⇢J finite

d(Ap
s,d : (s, d) 2 J0).

Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

If J = {0} ⇥ I1 [ {1} ⇥ I2, for some I1, I2 ✓ N�2, then

dimH (F
p

J ) � 1 + inf

8>>><
>>>:

r 2 (0, 1] :

0
BBBBBBB@
X

d12I1

1
(d1(d1 � 1))r

1
CCCCCCCA

p 0
BBBBBBB@
X

d22I2

1
(d2(d2 � 1))r

1
CCCCCCCA

1�p

 1

9>>>=
>>>;
.

Further, if I1 = I2 = I, then

dimH (F
p

J ) = d(Lp
s,d | (s, d) 2 J) = 1 + inf

8>><
>>:r 2 (0, 1] :

X

d2I

1
(d(d � 1))r  1

9>>=
>>; .

Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

{dimH (F
p
J ) : J ✓ {0, 1} ⇥ N�2} = [0, 2].
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