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Act 1 Finitely generated self-affine sets

Let X c R? be compact and let I be a finite index set. An iterated function system (IFS) on X
is a collection of {¢; : X — X : i € I} of contractions.

Theorem [Hutchinson. Indiana Univ. Math. J. 1981] An |IFS satisfies the open set condition if
There exists a unique compact non-empty set F there is a non-empty bounded open set U
such that such that
F=Ja(p). u2{ e
iel iel
» Fis self-similar, if ¢; is a similarity: with the union disjoint.

Theorem [Hutchinson. Indiana Univ. Math. J. 1981]
8i(x) = ¢i(y)l = rilx =yl o
Let F be a self-similar set and let s be the
» Fis self-affine if ¢; is an affine transformation: ~ unique solution to Y r? = 1:

i(x) = Li(x) +yi dimg/(F) < dimg(F) < dimg(F) < s
where L; € GLg4(R) and y; € RY with equality under the open set condition.

» Letting N;s(F) denote the smallest number of sets of diameter at most 6 which cover F

08D o Goma(F) — fimeup EREE)

dimg (F) = liminf -
dimg (F) I(I;TLI(? — log () 50  —log(s)

» dimg(F) = inf{s > 0: H5(F) = 0} = sup{s > 0 : H5(F) = oo}

HE(F)= (!Lna'H:(F) = {;Lm()inf Z\U/\S :{U;} is a 6-cover of F
j



Act 1 Finitely generated self-affine sets

Let X c R? be compact and let I be a finite index set. An iterated function system (IFS) on X
is a collection of {¢; : X — X : i € I} of contractions.

Theorem [Hutchinson. Indiana Univ. Math. J. 1981] Theorem [Falconer. Math. Proc. Camb. Phil. Soc. 1988]
There exists a unique compact non-empty set F 2nd [Solomyak. Maih. Proc. Camb. Phil. Soc. 1998]
such that Let F be a self-affine set and s be the value
F=|Ja(P).
il inf{geR.p: Z ¢q(L,'1...L,'n)<oo .
i ..in€l*

» Fis self-similar, if ¢; is a similarity:
8i(x) = ¢i(y)l = rilx -yl dimy(F) < dimg(F) < min{d, s}

» Fis self-affine if ¢; is an affine transformation: with equality holding for almost all transla-
tion vectors y;, if ||Lj|| < 1/2 for all i € I.
i(x) = Li(x) +yi
The value s is called the affinity dimension
where L; € GLg4(R) and y; € RY of the IFS, and is denoted by d(L; | i € I).

» For L € GL4(R), let 4 (L) > --- > ap(L) denote the singular values of L, and define the singular value function of L by

o) = {(n(L),A.umq(L)((qﬂ(L))”m*‘ ifo<r<d,

|det(L)|"/? if r>d,

ay(L)" ifo<r<i,
» When d = 2 we have ¢"(L) = Jaq (L)ap(L) ! if1<r<2,

|det(L)|"/? ifr>2,



Act 1 Finitely generated self-affine sets

Let X c R? be compact and let I be a finite index set. An iterated function system (IFS) on X
is a collection of {¢; : X — X : i € I} of contractions.

Example

7/8

1/8

1/4 3/4

dimg(F) = dimg(F) = 3/4 <1 =d(L; | i€ l)

Theorem [Falconer. Math. Proc. Camb. Phil. Soc. 1988]
and [Solomyak. Math. Proc. Camb. Phil. Soc. 1998]

Let F be a self-affine set and s be the value

inf{qeR>0 D L,y < oo}.

iy in€l*

dimg(F) < dimg(F) < min{d, s}

with equality holding for almost all transla-
tion vectors y;, if ||Lj|| < 1/2 for all i € I.

The value s is called the affinity dimension
of the IFS, and is denoted by d(L; | i € I).

» For L € GL4(R), let 4 (L) > --- > ap(L) denote the singular values of L, and define the singular value function of L by

¢'(L) = {‘del(L)lf/z
ar(L)
» When d = 2 we have ¢"(L) = {aq(L)ag(L) !
Idet(L)|2

a1(L)...apn-1 (L) (et (L)) M fo<r<d,

if r>d,

ifo<r<t,
if1<r<2,
ifr>2,



Question Can one classify classes of self-affine sets for which Hausdorff and affinity
dimensions coincide?

Recall, I'is a finite index set.

Theorem [Barany, Hochmann and Rapaport. Invent. math. 2019]

Let F c R? be a self-affine set generated by a finite iterated function system ® = {¢; : i € I}
and let L; denote the linear part of ¢;. If

» {Lj: i€ l} c GL2(R) generate a non-compact and totally irreducible group, and

» if ® satisfies the open set condition with feasible open set U such that UN F # 0

then dimg,(F) = dimg(F) = min{2,d(L; | i € I)}.

Theorem [Rapaport. arXiv:2309.03985, 2023]

Let F c RY be a self-affine set generated by a finite iterated function system ® = {¢; : i € I}
and let L; denote the linear part of ¢;. If

» L; = diag(ri1,ri2,....lg) forall i € I and not all similarities and

» &; = (¢ : i € I} is exponentially separated, where ¢;(x) = rij + yij,

then dimg(F) = dimg(F) = min{d,d(L; | i € I)}.

» Non-compact means that not all of the maps ¢; are similarities. Under this assumption, total irreducibility is equivalent to
the property that no line, or union of two lines, is invariant under all of the L;.

» A finite affine IFS W = {y : i € [} on X c R is said to be exponentially separated if there exist a constant ¢ > 0 and an
infinite set Q c N such thatp(n//a,1 < YonsYvq ...Yyp) 2 c"forall n € Q and distinct w1 ... wp,v1 ...vn € I, where, for
two affine maps 71(x) = r{x + ¢1 and 2(x) = rax + ¢z,

oo iftry #rp
e —col otherwise.

P(T1,Tz):{



Act 2 Ininitely generated self-affine sets

Let X c RY be compact and let  be a countable infinite index set. An iterated function system
(IFS) on X is a collection of ® = {¢; : X — X : i € I} of contractions.

We define the limit set of an infinite IFS by A limit set is called self-affine, if ¢; is an
affine transformation for all i € I, namely
F=J ) o di(X $i(x) = Li(x) + ¥i. Lj € GLa(R), y; € R.

(ik)kel™  keN
Theorem [Kaenmaki and Reeve. J. Frac. Geom. 2014]

Observe that Let F be a self-affine limit set. If ||L;|| < 1/2
(N forall i € I. For almost all translation vectors,
» F is not necessarily compact. dimg;(F) = min{d, d(L; | i € I)}

The dimension spectrum of an infinite IFS ® is D(®) = {dim¢,(F,) : J C [ is finite}, where
Fy is the attractor of {¢; : j € J}.

Theorem [Chousionis, Leykekhman and Urbanski. Selecta Math. 2019]

The dimension spectrum of a conformal infinite IFS satisfying the open set condition and

bounded distortion property is compact and perfect.
» For L € GL4(R), letq(L) > --- > ap(L) denote the singular values of L, and define the singular value function of L by

#(L) = ar(L)...an-1(L) (e (L) T ifo<r<d,
|det(L)|"/? if r > d,

> d(L,‘\ieI):inf{qe\Rw: D ¢Q(L,W..,L,n)<oo}

iy inel*



Act 2 Ininitely generated self-affine sets

Let X c RY be compact and let  be a countable infinite index set. An iterated function system
(IFS) on X is a collection of ® = {¢; : X — X : i € I} of contractions.

We define the limit set of an infinite IFS by A limit set is called self-affine, if ¢; is an
affine transformation for all i € I, namely
F=J ) o di(X $i(x) = Li(x) + ¥i. Lj € GLa(R), y; € R.

(ik)kel™  keN
Theorem [Kaenmaki and Reeve. J. Frac. Geom. 2014]

Observe that Let F be a self-affine limit set. If ||L;|| < 1/2
(N forall i € I. For almost all translation vectors,
» F is not necessarily compact. dimg;(F) = min{d, d(L; | i € I)}

The dimension spectrum of an infinite IFS ® is D(®) = {dim¢,(F,) : J C [ is finite}, where
Fy is the attractor of {¢; : j € J}.

Theorem [Chousionis, Leykekhman and Urbanski. Selecta Math. 2019]

The dimension spectrum of a conformal infinite IFS satisfying the open set condition and
bounded distortion property is compact and perfect.

Theorem [Jurga. Selecta Math. 2021]

The dimension spectrum of an irreducible affine infinite IFS satisfying the strong open set
condition, namely U N F # 0, is compact and perfect.

» An IFSis irreducible, if the linear parts of the affine maps do not all preserve a common proper non-trivial linear subspace.



Act 3 Dimensionality results for infinitely generated non-irreducible planar self-affine sets
Motivated by the question what happens if we have a non irreducible infinite affine IFS and the
study of restricted digit sets of signed Liroth expansions we studied the following class of IFSs.
Letp e (0,1) and (s,d) € {0,1} x Nxp

ALy [0,17 = [0,1]?

Ag(X) = L300 + Clps)

1/2 -

1/3 | 1-s s
] p'=*(1-p) 0
. o= g




Act 3 Dimensionality results for infinitely generated non-irreducible planar self-affine sets

Motivated by the question what happens if we have a non irreducible infinite affine IFS and the
study of restricted digit sets of signed Liroth expansions we studied the following class of IFSs.

Letp e (0,1) and (s,d) € {0,1} X Nxp

ALy [0,17 = [0,1]?

Ag(X) = L300 + Clps)

p'*(1-p)° 0
de(X) = [ 0 (-1)8
d(d-1)

Forp € (0,1) and J c {0, 1} x N>p we
consider the limit set of (AP : (s, d) € J}.
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Connections to Liiroth expansions
» Ldiroth expansions
dn —1
. (0] 0 _ n
lim S, ... (0) =) =

neN *ti=1 di(di = 1)




Act 3 Dimensionality results for infinitely generated non-irreducible planar self-affine sets

Motivated by the question what happens if we have a non irreducible infinite affine IFS and the
study of restricted digit sets of signed Liroth expansions we studied the following class of IFSs.

Letp e (0,1) and (s,d) € {0,1} X Nxp

ALy [0,17 = [0,1]?

Ag(X) = L300 + Clps)
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de(X) = [ 0 (-1)8
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Connections to Liiroth expansions
» Ldiroth expansions
dn —1
. (0] 0 _ n
lim S, ... (0) =) =

neN *ti=1 di(di = 1)

» Alternating Luroth expansions

-1)"d
lim Y.l (0)= 3 D
LAERACRDY [T, di(di = 1)

neN - =




Act 3 Dimensionality results for infinitely generated non-irreducible planar self-affine sets

Motivated by the question what happens if we have a non irreducible infinite affine IFS and the
study of restricted digit sets of signed Liroth expansions we studied the following class of IFSs.

Letp e (0,1) and (s,d) € {0,1} X Nxp

ALy [0,17 = [0,1]?

4240 = L2y + ()

d_

p'*(1-p)° 0
LEq(x) =[ 3 (-1)° ]

! Forp € (0,1) and J c {0, 1} x N>p we
consider the limit set of {Apd (s,d) e J}.

Connections to Liiroth expansions

» Liroth expansions » Signed Liroth expansions
dn —1
E (] (0] _ n . Sq S,
lim h...hG (0) = Z—d,(d,—ﬂ lim hg ,,,hn(o)
neN - = 145
q & q — -1 Z, gySi_n— "~ Ten
» Alternating Luroth expansions %;I( ) m dl(d, —1)
1)""dy
lim h} . 0 _(EN"dn
o e ( )= Z 1 di(di—1)

neN i=1



J =1{(0,2),(1,2),(0,3)) p=1/2 J=1{(0,2),(1,2)} p=1/2

J =1{(0,2),(1,2),(1,3)) p=1/2 J =1{(0,2),(1,3),(0,4),(1,4),(0,6), p=2/3
(1.6).(0.7).(1.7).(0.10). (0, 12)}



Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

> dimg((FP) <min{2,d(L?; | (s,d) € J)}

» If there exists a non-empty finite alphabet J; c J such that, for all J1 ¢ J> c J,
dimB(Fj’2) = d(AZ, : (s,d) € J2), then

d(AL, : (s.d) € J) < dimg(FY) and d(AL, : (s.d) € ) =J,C5Juf;i)nned(A§d 2 (s,d) e J).
Examples for the lower bound on @B(Fg)
> dimg(n1(F) )) = dimg(m2(F} )) = 1

For example when (0,2), (1,2) € J;
> dimg (1 (F} )) = 1 and min{p, 1 - p} > (d ~s)~" forall (s,d) € J.

For example when p = 1/2, 71(J) = {0, 1} and 72(J) € N3

Recall p € (0,1) and for (s,d) € {0,1} X Nsp

sp
A;’_d(x):Lf_d(x)Jr(ﬁ) and  LP (x)= 0 1S

We set J to be an infinite subset of {0, 1} x N>,
d(LP, | (s.d) e J) =inf{geRsg: > OULE g, - Lo gn) <>
(51.dq)-..(sn.dn)eJ*

and Ff denotes the limit set of (AP | : (s, d) € J}.



For (s,d) e Jletasg = p'~5(1 — p)° and bs g = (d(d — 1))~" and set
max {2 (s.d)e & g» X(s.d)e b o} ifO0<r<1
Py(r) = {max {3 (s.djes Bs.ably s X(s.apes 8ig bsa) if1<r<2
S (s.d)es(@sabs.a)'? ifr>2
Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]
d(L, 1 (s,d) € J) =inflr € Rug : Py(r) < 1)
If 4 (J) = {0,1}, then

d(LP 1 (s.d) € J) =inf{re [1,2] : max{Z(s)es Bs.ably > X(s.dpes ALg bs.a} < 1)

Recall p € (0,1) and for (s,d) € {0,1} X Nsp

sp
Azd(x):de(x)Jr(di) and  LP (x)=
—s

We set J to be an infinite subset of {0, 1} x Nxo,

d(LP, | (s.d) e J) =inf{geRsg: > ¢q(L£1Vd1.‘.L£n'dn)<oo .
(51.dq)-..(sn.dn)eJ*

and Fj’ denotes the limit set of (Af s,d) e J}.

g (



For (s,d) e Jletasg = p'~5(1 — p)° and bs g = (d(d — 1))~" and set

max {2 (s.d)e & g» X(s.d)e b o} ifo<r<t

Py(r) = {max {3 (s.djes Bs.ably s X(s.apes 8ig bsa) if1<r<2

Y (s.d)eu(@s.abs.a)’? ifr>2
Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

d(L, 1 (s,d) € J) =inflr € Rug : Py(r) < 1)
If 4 (J) = {0,1}, then

d(LP 1 (s.d) € J) =inf{re [1,2] : max{Z(s)es Bs.ably > X(s.dpes ALg bs.a} < 1)

Moreover, if (a) ¥ (s g)ey Ps.d < 1, (b) J = {0, 1} X [ for some | € No, or (c) p = 1/2, then

d(LP, 1 (s,d) € J) =infre[1,2] : 5 q)es asably <1

We set J to be an infinite subset of {0, 1} x Nxo,

d(LP, | (s.d) e J) =inf{geRsg: > ¢q(L£1Vd1.‘.L£n'd”)<oo .
(51.dq)-..(sn.dn)eJ*

and Fj’ denotes the limit set of (A:,d : (s, d) e J).



Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

> dimg(FP) <min{2,d(L; | (s,d) € J)}

» If there exists a non-empty finite alphabet J; c J such that, for all J; c J> C J,
dimB(Fj’z) = d(ALy: (s,d) € &), then

d(A?, : (s,d) € J) < dimg(F]) and d(Af,: (s,d) €J) = sup d(A?,:(s,d)eJ).
’ ’ J’cJ finite

Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]
If J={0} x ly U{1} X b, for some I, lo € N, then

1-p
P
dimg(F" )>1+|nf{re (0.1]: [g (d1(d1—1) ] (dze; (a2( dZ“”] S1}A

Further, if Iy = b = I, then

dimq,(F) ) = d(Lp (sd)eJ)—1+mf{re(01] Z d(d 1))r_ }
del

Theorem [van Golden, Kalle, Kombrink and Samuel. Nonlinearity 2025]

{dimg(F) : J € {0, 1} x N2} = [0,2].



