

Counting functions of the Laplacian on domains with fractal boundary

Sabrina Kombrink

University of Bremen, Germany

joint work with Lucas Schmidt

Fractals 8 – Cornell University

16 June 2025

Can one hear the shape of a drum? The Problem

 $\Omega \subset \mathbb{R}^d$ non-empty, open, bounded $\ \ (d \geq 1)$

$$\begin{cases} -\Delta u = \eta u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1)

 $-\Delta:=-\sum_{k=1}^d \frac{\partial^2}{\partial x_k^2}$ Laplacian Solutions ordered:

$$0<\eta_1\leq\eta_2\leq\cdots\leq\eta_n\leq\cdots,$$

where $\eta_n \to \infty$ for $n \to \infty$.

Physical interpretation:

(1) wave equation of function periodic in time η_k acoustic frequency of a wave mode.

Can one hear the shape of a drum? Inverse Problem – Compute the drum given its spectrum

Unsolvable for domains with piecewise smooth boundary:

(Gordon, Webb, Wolpert 1992)

Can one hear the shape of a drum? Inverse Problem – *Compute the drum given its spectrum*

Unsolvable for domains with piecewise smooth boundary:

Unsolvable for domains with fractal boundary:

Can one hear the shape of a drum? Forward Problem – Influence of a domain's geometry on its Laplace spectrum $\Omega \subset \mathbb{R}^d$ non-empty, open, bounded $(d \ge 1)$

$$\begin{cases} -\Delta u = \eta u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

 $-\Delta := -\sum_{k=1}^{d} \frac{\partial^2}{\partial x_k^2}$ Laplacian Solutions ordered:

$$0<\eta_1\leq\eta_2\leq\cdots\leq\eta_n\leq\cdots,$$

where $\eta_n \to \infty$ for $n \to \infty$.

Theorem (Weyl 1912, Ivrii 1980)

If Ω has sufficiently smooth boundary, then as $\eta
ightarrow \infty$

$$\begin{split} \mathcal{N}_{\Omega}(\eta) &:= \#\{\eta_n \leq \eta\} = c_d \mathrm{vol}_d(\Omega) \cdot \eta^{\frac{d}{2}} + c_{d-1} \mathrm{vol}_{d-1}(\partial \Omega) \cdot \eta^{\frac{d-1}{2}} \\ &+ o(\eta^{\frac{d-1}{2}}). \end{split}$$

Can one hear the shape of a drum? Forward Problem - Influence of a domain's geometry on its Laplace spectrum $\Omega \subset \mathbb{R}^d$ non-empty, open, bounded (d > 1) $\Omega = [0,1]^2 \setminus S$ $\begin{cases} -\Delta u = \eta u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$ $\partial \Omega = S$ $-\Delta := -\sum_{k=1}^{d} \frac{\partial^2}{\partial x^2}$ Laplacian Solutions ordered: $0 < \eta_1 < \eta_2 < \cdots < \eta_n < \cdots$ where $\eta_n \to \infty$ for $n \to \infty$. Theorem (Weyl 1912, Ivrii 1980) If Ω has sufficiently smooth boundary, then as $\eta \to \infty$ $N_{\Omega}(\eta) := \#\{\eta_n \leq \eta\} = c_d \operatorname{vol}_d(\Omega) \cdot \eta^{\frac{d}{2}} + c_{d-1} \operatorname{vol}_{d-1}(\partial \Omega) \cdot \eta^{\frac{d-1}{2}}$ $+ o(\eta^{\frac{d-1}{2}}).$

Influence of a domain's geometry on its Laplace spectrum Domains of interest

- Γ itself has fractal boundary
- Contraction ratios not all the same
- Conformal contractions
- Infinitely many contractions
- Not all concatenations allowed

Influence of a domain's geometry on its Laplace spectrum Domains of interest

- Γ itself has fractal boundary
- Contraction ratios not all the same
- Conformal contractions
- Infinitely many contractions
- Not all concatenations allowed

Fractal Sprays

Role of the generator

 $N_{\bigcup_{\omega}\phi_{\omega}K}(\eta) = \sum_{\omega} N_{\phi_{\omega}K}(\eta) = \sum_{\omega} N_K(r_{\omega}^2\eta), \quad r_{\omega} = |\phi_{\omega}'|$

Fractal Sprays Role of the generator

$N_{\bigcup_{\omega}\phi_{\omega}\kappa}(\eta) = \sum N_{\phi_{\omega}\kappa}(\eta) = \sum N_{\kappa}(r_{\omega}^{2}\eta), \quad r_{\omega} = |\phi_{\omega}'|$

$$\omega$$
 ω
 \rightarrow Lapidus 1991: $N_{\mathcal{K}}(\eta) = c_2 \operatorname{vol}_2(\mathcal{K})\eta + \mathcal{O}(\eta^{rac{\log 4}{2\log 3}})$

 \rightarrow Netrusov, Safarov 2005: boundary locally a graph

Strichartz, Wiese 2022:

$$\frac{N_{\mathcal{K}}(\eta) - c_2 \operatorname{vol}_2(\mathcal{K})\eta}{\eta^{\frac{\log 4}{2 \log 3}}}$$

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- Cover $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$ of $\Omega_{-\epsilon}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$
- D^ε_i have uniformly comparable diamater
- Each D_i^{ϵ} well-foliated

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

 $\Omega \subseteq \mathbb{R}^d$ well-covered, each covering domain has well-behaved foliation, $\partial \Omega$ has upper inner Minkowski dim δ . $\exists C_{\pm} \in \mathbb{R}: \forall \eta \geq \eta_0$

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

• parameterise fibers

$$\phi\colon (q,t)\mapsto \gamma_q(t)$$

•
$$\beta := |\det D\phi|$$

• ess $\inf_{(q,t)\in D}\beta(q,t) > 0$

•
$$\sup_{q\in I_0}\int_{\gamma_q}eta(q,t)\mathrm{d}t<\infty$$

Explicit error bounds

Foliations

Foliation:

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- $\Omega_{-\epsilon}$ well-covered by $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- $\Omega_{-\epsilon}$ well-covered by $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$
- Whitney cover \mathcal{W}_{ϵ} of $\Omega \setminus \Omega_{-\epsilon}$
- $N_{\Omega}^{N}(\eta) \leq \sum_{i} N_{D_{i}^{\epsilon}}^{N}(2\eta) + N^{N}(\operatorname{int} \bigcup_{Q \in \mathcal{W}_{\epsilon}} \overline{Q}, \eta)$

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- $\Omega_{-\epsilon}$ well-covered by $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$
- Whitney cover \mathcal{W}_{ϵ} of $\Omega \setminus \Omega_{-\epsilon}$
- $N_{\Omega}^{N}(\eta) \leq \sum_{i} N_{D_{i}}^{N}(2\eta) + N^{N}(\operatorname{int} \bigcup_{Q \in \mathcal{W}_{\epsilon}} \overline{Q}, \eta)$
- foliation gives lower bound on η_2^N on D_i^{ϵ} $\Rightarrow N_{D_i^{\epsilon}}^N(\eta) = 1 \ \forall \eta \leq \eta_0, \ \eta_0 \sim \epsilon^{-2}$

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- $\Omega_{-\epsilon}$ well-covered by $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$
- Whitney cover \mathcal{W}_{ϵ} of $\Omega \setminus \Omega_{-\epsilon}$
- $N_{\Omega}^{N}(\eta) \leq \sum_{i} N_{D_{i}^{\epsilon}}^{N}(2\eta) + N^{N}(\operatorname{int} \bigcup_{Q \in \mathcal{W}_{\epsilon}} \overline{Q}, \eta)$
- foliation gives lower bound on η_2^N on D_i^{ϵ} $\Rightarrow N_{D_i^{\epsilon}}^N(\eta) = 1 \ \forall \eta \leq \eta_0, \ \eta_0 \sim \epsilon^{-2}$
- 2-term asymptotics for polygons $\rightarrow c_d \operatorname{vol}_d(\Omega) \eta^{d/2} + A_\Omega \epsilon^{d-1-\delta} \eta^{(d-1)/2}$

Theorem (K., Schmidt 2024 & van den Berg, Lianantonakis 2001)

$$\mathcal{C}_{-}\eta^{\delta/2} \leq \mathcal{N}_{\Omega}(\eta) - c_{d} \mathrm{vol}_{d}(\Omega) \eta^{rac{d}{2}} \leq \mathcal{C}_{+} \eta^{\delta/2}$$

- $\Omega_{-\epsilon}$ well-covered by $\{D_i^{\epsilon} \subset \Omega\}_{i \in I_{\epsilon}}$
- $\#I_{\epsilon} \leq C(\Omega)\epsilon^{-\delta}$
- Whitney cover \mathcal{W}_{ϵ} of $\Omega \setminus \Omega_{-\epsilon}$
- $N_{\Omega}^{N}(\eta) \leq \sum_{i} N_{D_{i}^{\epsilon}}^{N}(2\eta) + N^{N}(\operatorname{int} \bigcup_{Q \in \mathcal{W}_{\epsilon}} \overline{Q}, \eta)$
- foliation gives lower bound on η_2^N on D_i^{ϵ} $\Rightarrow N_{D^{\epsilon}}^N(\eta) = 1 \ \forall \eta \leq \eta_0, \ \eta_0 \sim \epsilon^{-2}$
- 2-term asymptotics for polygons $\rightarrow c_d \operatorname{vol}_d(\Omega) \eta^{d/2} + A_\Omega \epsilon^{d-1-\delta} \eta^{(d-1)/2}$
- For large η can choose $\epsilon : \ \eta \approx \epsilon^{-2}$

Higher order asymptotics Transforms

$$\begin{split} \mathsf{N}_{\bigcup_{\omega}\phi_{\omega}K}(\eta) &= \sum_{\omega} \mathsf{N}_{\phi_{\omega}K}(\eta) = \sum_{\omega} \mathsf{N}_{K}(r_{\omega}^{2}\eta) \\ &= \sum_{\omega} c_{2}\mathsf{vol}_{2}(K) \cdot r_{\omega}^{2}\eta + \mathsf{M}_{K}(r_{\omega}^{2}\eta)r_{\omega}^{\frac{\log 4}{\log 3}}\eta^{\frac{\log 4}{2\log 3}} \end{split}$$

Higher order asymptotics Transforms

$$\begin{split} \mathsf{N}_{\bigcup_{\omega}\phi_{\omega}K}(\eta) &= \sum_{\omega} \mathsf{N}_{\phi_{\omega}K}(\eta) = \sum_{\omega} \mathsf{N}_{K}(r_{\omega}^{2}\eta) \\ &= \sum_{\omega} c_{2}\mathsf{vol}_{2}(K) \cdot r_{\omega}^{2}\eta + \mathsf{M}_{K}(r_{\omega}^{2}\eta)r_{\omega}^{\frac{\log 4}{\log 3}}\eta^{\frac{\log 4}{2\log 3}} \end{split}$$

- \rightarrow Fourier-Laplace transform
- \rightarrow meromorphic extension
- \rightarrow poles, residues at poles
- \rightarrow recover information on the original problem

Influence of a domain's geometry on its Laplace spectrum Steiner-Formulae & Weyl-Asymptotics

$$N_{\Omega}(\eta) = \sum_{z \in \widetilde{\mathcal{Z}}} \mathcal{W}(\eta) \eta^{z} + \mathcal{W}_{2}(\eta) \eta^{1} + \mathcal{O}(\eta^{\frac{\log 4}{2\log 3}})$$
$$\widetilde{\mathcal{Z}} = \left\{ \Re(z) < \frac{\log 4}{2\log 3} \mid 1 = \sum_{i \in \Sigma} r_{i}^{-2z} \right\}$$

$$\operatorname{vol}_{2}((\partial\Omega)_{\varepsilon}) = \sum_{z \in \mathbb{Z}} \mathcal{M}(\varepsilon)\varepsilon^{z} + \sum_{z \in \mathcal{S}} \mathcal{M}_{2}(\varepsilon)\varepsilon^{z}$$
$$\mathcal{Z} = \left\{ \Re(z) \mid 1 = \sum_{i \in \Sigma} r_{i}^{2-z} \right\}$$
$$\mathcal{S} = \left\{ 2, 2 - \frac{\log 4}{\log 3} \right\}$$