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Spectral properties of a torsion-free weakly branch group
defined by a three state automaton

Rostislav I. Grigorchuk and Andrzej Zuk

ABSTRACT. We continue the study of a torsion free weakly branch group G
without free subgroups defined by a three state automaton which was initi-
ated in [20]. We study the spectral properties of G which are related to the
amenability question. It is also shown that the conjugacy problem is solvable
for G as well as for the Brunner-Sidki-Vierra group.

1. Introduction

The spectra of finitely generated groups play an important role in different
topics of mathematics such as random walks, operator algebras, operator K-theory,
non commutative geometry etc. It is especially important to study the spectra of
torsion free groups. This problem is related to the Kadison-Kaplansky conjecture
on idempotents [31], to one of the versions of the Atiyah conjecture on L2 Betti
numbers [27] and to the Baum-Connes conjecture on the assembly map [5].

In the study of this and other kind of questions an important role belongs to the
groups generated by finite automata (for a general information about such groups
see [23]). The spectral properties of some automata groups were studied in [1} and
[19]. It is a question of great importance to continue the study of groups generated
by automata and first of all by automata with a small number of states.

In this article we study the spectral properties of a torsion free group G gen-
erated by a 3 state automaton (see Figure 1) which was first considered in the
paper [20]. This group shares several similar properties with a group of Brunner-
Sidki-Vieira from [6] as was mentioned in [20] and there is even deeper relation,
as we indicate in Section 6. Among other results in [20] the following alternative
was proven: Either GG is amenable but not subexponentially amenable, or G is a
non amenable group without a free subgroup on two generators. Thus the study of
amenability properties of G is an actual question because this question is related to
modified versions of the Day-Greenleaf-Neumann problem as was indicated in [20].

According to a result of Kesten [25], the amenability of G is equivalent to the
presence of 1 in the spectrum of the Markov operator on the Cayley graph of G (see
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FicURE 1. The automaton A

also [24]). At the moment we are not able to answer the question about amenability

but we show that 1 is in the spectrum of the Hecke type operator which naturally
arises for any group generated by a finite automaton. Perhaps this should indicate
that G is amenable. One of the main properties is that G is a contracting group
(this is the first example of a contracting group of exponential growth). It is not
known if every contracting group is amenable.

The study of the spectra of groups generated by finite automata w
in [1] and continued in [19] with an application to the strong Atiyah conjecture
about L? Betti numbers [22]. One of the important features of the method devel-
oped in [19] is the inclusion in the spectral problem of additional parameters and
the reduction of it to the study of dynamic properties of a rational mapping of the
Euclidean space R? for d > 2.

There are very few examples where s
also of this type as we show in this article.
in [19], for the dynamical system associated to G we

case of dynamic behavior.
The Hecke type operator that we study is related to a quasi-regular repre-

sentation that naturally arises for groups acting on rooted trees, in particular for
automata groups. An important question is how the spectrum of this quasi-regular
representation is related to the spectrum of the regular representation. In our case
the question is of especially high interest as the group is torsion free and the Hecke
type operator has many gaps in the spectrum.

To make a comparison of this spectrum we also consider the diagonal action in
a direct product of two copies of the tree and see by computer experiments, that
the gaps in the spectrum disappear. This shows that the spectrum of the group is
much larger than the spectrum of the quasi-regular representation. Perhaps it even
contains it and therefore by the Kesten criterion G would be amenable.

To a group generated by a finite automaton one can associate different C*-
algebras. This is related to the idea, of self-similarity and our group, its actions, rep-
resentations and associated C*-algebras have several self-similarity features. One
can consider elements in this C*-algebras given by the same element of the group
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ring as the Markov operator. An interesting question is the dependence of the
spectrum of this element on the C*-algebra (in examples considered before there is
no dependence, which follows from the amenability property). It will be considered
in a forthcoming paper [21].

The group we study has many similar properties with the group H from [6]
as was mentioned above. Here for the groups G and H we establish an important
fact, which answers the question from [6].

THEOREM 1.1. The conjugacy problem is solvable in G and in H.

Let us mention that the conjugacy problem for the group from [13] (which is
also generated by a finite automaton and historically was the first example of a
group of branch type like G) was solved by Y. Leonov [26] and A. Rozhkov [29)].

The last result gives some contribution in the study of algorithmic properties of
groups generated by finite automata where the main question is if there is a group
generated by a finite automaton with unsolvable conjugacy problem.

1.1. Automata groups. The automata that we use are finite invertible au-
tomata with the same input and output alphabet D = {0,1,...,d — 1} for some
d > 1. Such an automaton A has a finite set @ of states, transition and exit func-
tions: ¢ : Q@ XD — Q, w: QxD — D and is characterized by the quadruple
(D,Q,p,w).

The automaton A is invertible if for any ¢ € @ the function w(g,-) : D — D
is a bijection and therefore can be identified with the corresponding element oq of
the symmetric group S4 on d = #D symbols, where # denotes cardinality.

There is a convenient way to describe a finite automaton by a labeled graph
I'(A) whose vertices correspond to the elements of Q, two states ¢, s € @ are joined
by an oriented edge labeled by ¢ € D if ¢(g,1) = s, and each vertex q € @ is labeled
by the corresponding element o, of the symmetric group.

The automata just defined are non-initial automata. To make them initial
one has to declare some state ¢ € Q as the initial state. The initial automaton
Ay = (D,Q,¢,w,q) operates on the right on finite and infinite sequences over
D in the following way. For each input symbol z € D it immediately gives the
output y = w(q,z) and changes his initial state to (g, z). Joining the output of
A4 with the input of another automaton B; = (D, S, , 3, s) one gets a map which
corresponds to a finite automaton Cl, ) called the composition of A, and B, and
denoted by A4 x Bs. v

This automaton can formally be described as the automatoh with the set of
states () X § and the transition and exit functions ®, ) defined as

2((z,9),1) = (¢p(=, 1), a(y, w(=, 1)),

U(z,y),1) = By, w(z,9)),
with the initial state (g, s).

The composition AxB of two non-initial automata is defined by similar formulas
for transition and exit functions only without indicating the initial state.

Two initial automata are called equivalent if they determine the same map on
the set of strings. There is an algorithm for minimization of a finite automata
which produces an automaton with minimal number of states which is equivalent
to the given one [11]. The elements of an automaton group are equivalence classes
of automata, i.e. automorphisms of trees (see Section 1.2).
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An automaton producing the identity map on the set of strings is called trivial.
If A is an invertible automaton then for each state g the initial automaton A, has
an inverse automaton A7 ' such that Ag % A7t A7l x Aq are equivalent to a trivial
automaton, i.e. an automaton inducing the identity map on the set of sequences.

The inverse automaton can formally be defined as the automaton
(D,Q,%,,q) where (s, i) = p(s,i% ), B(s,48) = 95" for s € Q. The classes of
equivalence of finite invertible automata over the alphabet D constitute a group
which is called a finite automata group (it depends on D). Any set of initial
automata generate some subgroup of this group.

Now let A be an invertible non-initial automaton as in the beginning. Let
Q= {q,...,qs} be the set of states of Q and let Ay, ..., Aq, be the set of initial
automata which can be created from A. The group G(A) = (Aqy, .-, Ag,) Is called

the group determined or generated by A (see [15]).

1.2. Action on a tree. The strings over an alphabet D = {0,...,d — 1} are
in one-to-one correspondence with vertices of a d-regular rooted tree Ty whose root
vertex corresponds to the empty string. \

An initial automaton A, acting on strings over D acts also on Ty as an auto-
morphism. Thus for any group generated by an automata, in particular for a group
of the form G(A) there is a canonical action on the corresponding tree. This action
is described in more details in [19, 23].

Aut(T) is a pro-finite group with a natural topology. Thus for any subgroup
G < Aut(T) one can consider the closure G.

Let now G be any group acting on a regular tree T'. The boundary OT consisting
of geodesic paths joining the root vertex to infinity has a natural topology which
makes it homeomorphic to the Cantor set.

The action of G on T induces the action on 8T by homeomorphisms and there
is a canonical invariant uniform measure 4 on T which is the Bernoulli measure
on DN given by the distribution {53}

There is a canonical way to associate to a dynamical system with an invariant
measure a unitary representation. In our case this gives the representation 7 on

L2(8T, 1) defined as (n(g)f)(z) = f(g™'2).

1.3. Automata groups and wreath products. There is a close relation
between automata groups and wreath products [11]. For a group of the form G (4)
it has the following interpretation.

Let g € @ be a state of A and let o4 € Sg be the label of this state. For each
symbol i € D denote by Ag the initial automaton with the initial state v(q,%)
(thus Ag for ¢ = 0,1,...,d — 1 runs through the set of initial automata A, for
which there is an edge from p to ¢ in the graph of the automaton A.

Let G and F be finitely generated groups such that F is a permutation group
of a set D (the case which will be interesting for us is when F' is a symmetric group
S, and D is the set {0,1,...,d— 1}). Define the wreath product G 1p F of these
groups as follows. Elements of G 1p F are couples (g,7) where g : D — (Gisa
function such that g(z) is different from the identity element ‘idg of G only for
finitely many elements z in D, and where « is an element of F. The multiplication

in Gp F is defined as follows:
(91,71)(92,72) = (93,7172)
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where ‘

g3(z) = g1(z)g2(2") forxz € D.
We will write the elements of the group G ip Sy as expressions (ag, ... ,aq4-1)0,
where ag,...,a4-1 € G and 0 € .

The group G = G(A) embeds in the wreath product G 1p Sy via the map
Ag = (Ago,- .. s Aqd-1)0g,

where ¢ € Q. This can be seen from the action of G(A4) on the tree, described in
the previous section (for more on this see Section 3.3 in [23]). The expression on
the right hand side of the arrow will be called a wreath decomposition of A.

We will write in the text 4, = (Aq0,- .. ,Aqd-1)0, Without making special
comments. The wreath product leads to the following matrix presentation:

7 =1

Ag= 1 A'

q,

ie. the element A, ; is on the intersection of i-th row and j = i¢-th column.

1.4. Branch groups. For a group G = G(A) acting by automorphisms on a
corresponding rooted tree 7' we denote by Stz(n) the subgroup of G consisting of
those elements of G which act trivially on the level n in the tree T'. Analogously
for a vertex u € T we denote by Stg(u) the subgroup of G consisting of those
elements of G which act trivially on u, i.e. fixing u. The group G embeds in the
wreath product Gip Sy and let ¢ : G — G 1p Sy denote this homomorphism. If
an element g € G belongs to the stabilizer Ste(1) of the first level, we get an
embedding ¢ : Stg(1) — G x ... x G (d times) in the base group of the wreath
product. This defines canonical projections v; : Stg(1) — G (i = 1,... ,d) on the
i-th coordinate. In future we will often omit the subscript G.

A stabilizer Stg(n) of the n-th level is the intersection of all stabilizers of this
level. For any vertex u € T we can define the projection 1y, : St(u) — G.

DEFINITION 1.2. A group G is called fractal if for any vertex u, ¢, (Stg(u)) =
G after the identification of the tree 7' with a subtree T, with a root wu.

A rigid stabilizer of the vertex u is the subgroup Ristg (u) of automorphisms
of G that acts trivially on the complement of the subtree 7.,. The rigid stabilizer
of the n-th level Ristg(n) is the group generated by rigid stabilizers of vertices on
this level.

A group G < Aut(T') is spherically transitive if its action on each level of the
tree T is transitive.

A spherically transitive group G < Aut(T) is called a branch group if Ristg(n)
is a subgroup of finite index for every n € N. A spherically transitive group G <
Aut(T) is called a weakly branch group if | Riste(n)| = oo for every n € N. ‘

As long as there is no confusion we will omit the subscript G in Sta(u),
Ristg(u), ete.

DEFINITION 1.3. We say that the group G is regular weakly branch over a

subgroup K # {1} if #(K) > K x ... x K (d factors each of which acts on a
corresponding subtree T, |u| = 1).
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The embedding ¢ : G — G p Sa, § — (9o, --- ,ga—1)o defines a restriction g;
of g in the vertex i of the first level. The iteration of this procedure leads to the

notion of restriction g, of g at any vertex u.

The length of a word w and of the element g is denoted by |w| and |g| respec-
tively.

DEFINITION 1.4. A group G is called contracting if thereis A <1 and C,L € N
such that for any vertex u at the level [ > L

We use the notations z¥ = y~zy, [z,y] = 'y~ zy and (X)¥ for the normal
closure of X in Y.

1.5. Operator recursion. Let us fix an isomorphism between H and H@H,
where 7 is an infinite dimensional Hilbert space, which arises from the splitting of
8T into two parts Ey and E; corresponding to subtrees Tp, Ty growing from the
first level, the canonical isomorphisms L?(9T, 1) = L?(Eo, po) ® L?(E1, p1) where
11; is the restriction of y on E; and the isomorphism L2(0T, p) =~ L?(Es, i), 1 = 0,1
naturally arising from the isomorphism T' ~ Tj, ¢ = 0,1.

For simplicity we will denote the generators A,, Ay and A, of the group G
determined by the automaton A from Figure 1 by a, b and c. It is easy to see that
the state A, produces the identity map and thus ¢ = 1. Let G = (a,b) be the
group determined by the automaton on three states from Figure 1. We will keep
this notation until the end of the article. ’

After fixing the above isomorphism H ~ H & H the operators m(a) and w(b),
where 7 is the representation from Section 1.2, which we still denote by a and b,

satisfy the following operator recursion:

(10N (01
Lo v/ " \a 0)

which corresponds to the wreath product type relations: a = (1,b) and b= (1,a)e.
Let 7, be the permutation representation of a group @ arising from the action
of G on the level n, vertices of the associated tree and let 7, be the Hilbert space of
the real functions on the n-th level. Let a,, and b, be the matrices corresponding
to the generators for the representation mn, n = 0,1,.... Then ag = by = Id, and

[ Idp O (0 Idy
o e (0 ) (L )

where we keep in mind the natural isomorphism Hp =~ Hpe1 @ Hp—1-
The Hecke type operator Z associated with the dynamical system (0T, G,

u) is the operator
1
Z == 7(s)
: IS' seS
where S is a symmetric set of generators of G. This is a self-adjoint operator whose
spectrum is called the spectrum of the dynamical system (it may depend on the

system of generators).
Recall that to a group G generated by a finite symmetric set S one can associate

a Cayley graph with the vertex set the elements of G and the edges corresponding
to pairs (g1, g2) such that 97 tga €S. :
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More generally, if H is a subgroup of G' (not necessarily normal), one can
associate to the triple (G, H,S) the Schreier graph with the vertex set the right
cosets G/H and the edges corresponding to pairs (gH, sgH) such that s € S and
g €G.

With any connected, locally finite graph J one can associate the Markov (or
the random walk) operator M acting on the Hilbert space [%(J,deg) determined
by the weight deg (degree of vertices) as follows:

(Mf)(= deg Z fly

where z,y € V(J) which is the set of the vertices of J and ~ denotes the incidence
relation. The operator M is a self adjoint operator and the spectrum sp(M) (i.e. the
set of A such that the operator M — ) is not invertible on [2(7)) is a subset of [—1,1].
The spectral measure pg()), £ € V(J) is defined by the relation p(™(z,z) =
f_ll A"dpz () and may depend on z (but in case of the Cayley graph p;()) does
not depend on z).

We also consider an operator L in [?(G/P) where P is the so-called parabolic
subgroup of G, i.e. the group of the type P = Stg(e), e € 8. The operator L is
given by the same averaged sum of generators as M, considered as an operator for
the quasi-regular representation Ag/p.

For Schreier graphs the degree of all vertices coincide with the number |S| of
generators. For graphs with uniformly bounded degree there is a criterion when
1 € Sp(M). Namely 1 is a point in the spectrum of M if and only if the graph
J is amenable i.e. there is a sequence {F,}22; (called a Fglner sequence) of finite
subsets of V' (J) such that |J,, F, = V(J) and lim,_s ’—ff{i—’]' = 0 where OF, is the
boundary of the set F,, and |- | denotes the cardinality.

This is a theorem of Kesten [25] in case of the Cayley graphs and in case of
graphs with uniformly bounded degree this was proven in [10].

1.6. Some properties of the group G. Let as before G be the group given
by the automaton from Figure 1 (we will keep this notation until the end of the
paper). In this section we recall properties of the group G regarding fractalness, con-
tracting of the action, branchness, torsion, growth, presentation, just non-solvability
and classes NF' and SG which were obtained in our previous work [20].

Definitions of fractal, contracting and weakly branch group were given in Sec-
tion 1.4. As a reference for growth we give [24]. An infinite group is just non-
solvable if every proper quotient is solvable. The classes AG, EG, SG and 'NF
are defined as follows. AG is the class of all discrete amenable groups, i.e. those
groups G for which there exists a Banach mean on £°(G) [12]. EG is the class of
elementary amenable groups, i.e. the smallest class containing finite and abelian
groups which is closed under taking extensions, subgroups, factor groups and di-
rect limits. NF is the class of groups which do not contain a free group of rank 2.
The classes EG and NF first appeared in [9]. Finally let SG be the class of sub-
exponential amenable groups, i.e. the smallest class of groups containing groups of
sub-exponential growth and closed under taking extensions and direct limits. This
class was introduced in [24] (see page 64) where the following problem was stated

PROBLEM 1. Is it true that SG = AG?
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THEOREM 1.5 ([20]). Let G be the group generated by the automaton from
Figure 1. The group G

a) is fractal;

b) is regular weakly branch over G';

¢c) is torsion free;

d) has exponential growth;

e) is just non-solvable;

f) has a presentation:

G= (a,b]ai([a,abj])zl,i:0,1,... ,i=1,3,...),

fa — b

g { b —- a

g) has solvable word problem;

h) is not in the class SG;

i) is in the class NF;

7) s contracting;

k) $(Ste(1)) > B x B and G/G' = 72 = (@, b), where B = (b)® and T denotes
the tmage of the element x.

" where

As in this paper we will use the result that G is contracting, let us state it
precisely:

PROPOSITION 1 ([20]). The group G is contracting with parameters A = 2,
C=1and L=1.

For the proof of solvabilty of the conjugacy problem we also need:

LEMMA 1.6 ([20]). a) Let g € Sta(1),9 = (go,91). ‘Then
(1.2) 90| + lg1] < lgl.
and |g;| < |g| i=0,1 3f
g & {a", b ra"b,ba™b" ,n € Z\ 0} = E.
b) Let g & St(1), g = (g0, g1)e. Then |go| + lg1] < lg| and |gs| <lgl, i =0,1 7
g&{a"b,b"ta",n€Z}=F.
1.7’. Embedding of G into a finitely presented group. As was observed

by L. Bartholdi the presentation from Theorem 1.5 can be simplified. We will use
this simplification to embed G into a finitely presented group.

PROPOSITION 2. The group G has the following presentation
G = (a,blo*([a,a"]) =1,k =0,1,...).
Proor. As _ L,
a¥ =[a7%b7%a® mod [v?,5%%,
[bZ, bZa] — [G,, ab]a
and
[[a®b7%,a] =1 mod [a,a’]

we have for any odd ¢

[a,abi] =1 mod [a,a’],{a,a’]”

-
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and hence

[a,abi]ak =1 mod [a, ab]0k> [%ab]c‘ﬂ-l

Therefore the presentation f) from Theorem 1.5 can be reduced to the presentation

from Proposition 2. O

The following embedding theorem uses the same idea as [16].

THEOREM 1.7. The group G embeds into a finitely presented group

G = ({a,bt|[a’ a]=1,a* =b*b" =a)
= (bt 5] = 1,5 =b?)

which is an excending HN N -extension

G=(G,tt gt =0(g),9 € G).

ProOF. The relators of G are the relators of G and the relators coming from
the action of ¢ by a conjugation on generators of G. Thus

G = (a,bt|o"a,a’]=1,k=0,1,...,a" = o(a),b’ = o (b))
(a,b,t|[a® a] = 1,a° =%, b = a,0%([a,a”]) = 1,k =0,1,...)

I

But the relations o*([a,a’]) = 1, k = 1,2,... are consequences of the first three
relations which lead to the finite presentation given in Theorem 1.7. O

COROLLARY 1. The group G does not contain a free group of rank 2 and is not
in the class SG.

Proor. The following exact sequence holds
1—-0Q — é —-(C—1

where @ = [ J22, t"Gt™™ and C is the cyclic group generated by t.

If the group G were in SG then because the class SG is closed under taking
subgroups the group G would be also in SG as @ is isomorphic to a subgroup of G
and @ contains a copy of G.

Because G € NF we get Q € NF. As C € NF this implies G € NF. O

COROLLARY 2. The group G is amenable if and only if G is amenable.
PROBLEM 2. Is the group G amenable?

If the answer to the above question is yes, we obtain first examples of groups
which are amenable but which are not in the class SG. This would also answer
Problem 1.

If the answer is no, we get the first example of a finitely generated, residually
finite non-amenable group without Fy and an example finitely presented nona- '
menable group without F;. Recently an example of a finitely presented nona-
menable group without Fy was constructed by A. Y. Olshanski and M. Sapir [28].
If G happens to be nonamenable we will get a much simpler example of this sort
given by a balanced presentation. Let us remind that another candidate for such
an example is the R. Thompson group [7].
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2. Conjugacy problem for G

For an element z € G let |z|, denote the exponent sum of a in z. This does
not depend on a word representing = (by Lemma 1 in [20]).

LEMMA 2.1 ([20]). A pair (z,y) withz,y € G determines an element of St(1)
if and only if || = |Yla-

PROOF. (compare with the proof of Lemma 2 in [20]) As Stg(1) is generated
by a = (1,b), a® = (b% 1) and b? = (a,a), it is clear that if (z,y) € Stc(1) then

|zla = |yla-
. Assume that z,y € G and |z|, = [y|a. Using a and b? we can reduce (z,y) to

the form (z,1), |z|o =0. But z € B = (b)¢ and G > B x B. O

Let C(g) denote the centralizer of the element g.

LEMMA 2.2.

C(a) = {(a)mod &,
Cb) = (b)modG.

PrOOF. If C(a) 3 g then g € St(1). Indeed if g = (z,y)e then gag~t =
(zbz~1,1) # (1,b) = a. Moreover g = (z,y) and y € C(b) because of the relation
a = (1,b) and fractalness of G. We use induction on the length of g. We have
ly| < |g| and by Lemma 1.6 |y| < |g| if g € E. Then y = biz where z € G'.

Lemma 2.1 implies that |z|, = 0 as (z,bz) € G. Thus z = bt for t € G’ and
g = (z,y) = (,b") mod G’ X G'. But as [a,b] = (b,b™1) mod G’ x G’ we get
g=(1,67) mod G’ as G' > G’ x G’. Thus g € (a) mod G’ as a = (1,b). So the
induction works for the proof of the first relation because the cases when g € E can
be easily verified.

Let g € C(b). Then either g € St(1) or gb € St(1). So we can assume g € St(1).
If g = (z,y) commutes with bthen z =y and z € C (a). Indeed we have in this

case (1,a)e = gbg™" = (zy~ ', yazt)e.
Let g = (z,2),z € C(a) and g ¢ E. Then z = a’z,z € G' by inductive

assumption. But in this case

g = (a*,a*) mod G’ = b% mod G’
and lemma is proved because the case g = (z,z), ¢ € C(a), g € E can be easily
verified. O

Theorem 1.1 for G follows from

PROPOSITION 3. For any pair g,h € G solutions of the equation
(2.1) g =h
in the group G constitute either an empty set or in projection on Z? = G /G’ give a
set Z = Z(g,h) which is a union of finitely many cosets wrCr, of subgroups Cy in
Z2.

Given (g, h) the set Z can be constructed effectively by producing elements wy, €
72 and generating sets for subgroups C.

Indeed this implies Theorem 1.1 because g and h are conjugated if and only if
the set of solutions of (2.1) is nonempty.

SPECT1
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PROOF. Proposition 3 will be deduced from the following lemmas.

LEMMA 2.3. Stg(1) after abelianization can be identified with o subgroup Z3
in (2% x Z?) generated by elements (1,b), (b, 1), (a,a), where T is the image of x in
72 =GJa.

PRrOOF. This follows from Theorem 1.5 k) and the fact that St (1) is generated
by a = (1,b), a® = (b%,1) and b* = (g, a). O

LEMMA 2.4. Let X = Juw;4;, Y = Uv;B; be unions of finitely many cosets
in 22 (A;, B; < G). Then there ezists a union Z = UwiCy of finitely many cosets
in Z? (Cr < Z?) such that the projection in 72 = G/G' of the set

(22) {fEStG(l)f:(fmfl)?%GX:-f_leY}
coincides with the set Z.

Moreover the set Z can be constructed effectively by given data for X, Y. A
similar statement also holds in a situation when (2.2) is replaced by

(23) {fgStG(l):f:(f())fl)f':’%eXaEEY}

Proor. Consider first the set (2.2).

As fo € X, fi € Y we have the inclusions fy € u;4;, f1 € v;B; for some 1, 7 (all
such pairs 4, j can be effectively found).

Given integer coordinates of u;, v; and of generators of A;, B; one can express
the inclusions fy € u;A4;, f1 € v; B; in the form of relations

(fo)a = (Wi)a+ >, ma(s®)s
(fo)o = (ui)s+ 20 ma(sP)s
(A = (@)atLgnst)a
(f1)s (0306 + 5 ma(t))s

where mq,ng € Z,{s¥} is a generating set of A;, {tﬁ3 } is a generating set of B;.
The vector (fo, f1) determines an element of G if and only if | fola = |f1]s. Thus

(2.5) (ui)a+ Y mal(s¥)a = (v)s+ > na(t)s.
a B

Keeping in (2.4) parameters mq, ng € R satisfying the condition (2.5) we get some
lattice in R* defined by equations with integer coefficients which is a union of
finitely many cosets wC' for some w € Z*, C' < Z* and can be determined effectively.
Projection of the coset wC' in Z* is again a coset. The image of St(1) is a subgroup
4 of index 2 in the abelianization Z* of G. The abelianization of St(1) (which is Z?)
projects on Z? in a canonical way and the set Z from the statement of Lemma 2.3
is the projection of the union of the above cosets, and thus can be determined
effectively. This finishes the proof of the first part of the statement.

The second part easy reduces to the first. Indeed if f & Sta(1l) then bf =
(La)e(fo, f1)e = (f1,af0) and f1 € Y,afy € aX. But aX is a union of cosets the ‘
data for which can be constructed with data for X effectively. O

(2.4)

i

I

LEMMA 2.5. Let X = Ju; A; be a union of finitely many cosets in Z2 (A; < G)
and §,n € G. Then there ezists a union Z = | JwCy, of finitely many cosets in 7?2
(C < Z2) such that the projection in 72 = G/G" of the set

(2.6) {f € Ste(l) : f = (fo,6fom), fo € X}
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coincides with the set Z.
Moreover the set Z can be constructed effectively by given data for X. A similar

statement also holds in a situation when (2.6) is replaced by
- (2.7) {f & Ste(1) : f = (fo,&fome, fo € X}

ProoOF. Consider first the set (2.6).
As fo € X we have the inclusions fy € u;A; for some i (all such i can be

effectively found).
Given integer coordinates of u; and of generators of A; one can express the

inclusion fo € u;A; in the form of relations
{ (fo)a = (Ui)a+ D g Ma(55)a

(2.8) (fO)b = (ui)b-‘i‘zama(‘g?)b

where mq € Z,{s®} is a generating set of A;. The vector (fo, f1) determines an
element of G if and only if |fola = |f1la- Thus for fi = £fon, we have (fo, f1) € G

if and only if
(2.9) ¢la +Inla = 0 and [€]p + Inls = 0.

Satisfying the condition (2.9) we get some lattice in R* defined by equations with
integer coefficients which is a union of finitely many cosets wC for some w € Z*,C <
74 and can be determined effectively. Projection of the coset wC in 74 is again a
coset. The image of St(1) is a subgroup A of index 2 in the abelianization Z?2 of
G. The abelianization of St(1) (which is Z%) projects on Z? in a canonical way and
the set Z from the statement of Lemma 2.3 is the projection of the union of the
above cosets, and thus can be determined effectively. This finishes the proof of the
first part of the statement.

The second part easy reduces to the first. O

We also use the following lemma.
LEMMA 2.6. Let f,g,h € G and assume that the relation (2.1) holds (in par-
ticular g, h € St(1) or g,h & St(1)).

1. Let g, h € St(1), g = (90,91), b = (ho, ha)-
a) If f € St(1), f = (fo, f1) then (2.1) is equivalent to

fo
9%’ = ho
2.10
(2.10) fo - %
b) If f & St(1), f = (fo, f1)e then (2.1) is equivalent to
fo
g9 = h1
2.11
(211 { gi* = ho

2. Let g,h g St(l); g= (90:91)5: h= (hO, hl)s-
a) If f € St(1), f = (fo, f1) then (2.1) is equivalent to

(2.12)

{(Qogl)f" = hoh
f1 = gifohi"

SPECT
b)

(2.13)
We use t]

a € St(1) and
we can apply
If g,h ¢
assumption fo
the set of solu
constructed.
effectively con

By Lemm
projection in !
effectively con

We have tl
operator on [2
operator in L?
for the comput

Let G, =«
2™, of the verti
a path e € 0T,
the n-th level.

Let us den
the canonical f
generators a, b
distinguished p:
and J, = C(G,
J in the sense

Let L, be
dimensional op

sures of L,, cor
convergence of :

Let now &,
atoms, where F
string w.

Let H = 1
functions of atc
with respect to
(G, 0T, ) becar
€n-

Let 7, = 7|
of a group G ar
not a faithful



for X. A stmilar

all such i can be

e can express the

f1) determines an
> have (fo, f1) €G

by equations with
-some w € Z*,C <
,C in Z* is again a
belianization Z* of
_ canonical way and
of the union of the
hes the proof of the

d

(2.1) holds (in par-

t to

nt to

it to

SPECTRAL PROPERTIES OF A TORSION-FREE WEAKLY BRANCH GROUP 69

b) If f & St(1), f = (fo, f1)e then (2.1) is equivalent to

(gog1)Te = hiho
(2.13) { £ = gthom

We use the induction on the number |g| + |h| > 2. If [g| = |h| = 1 then as
a € St(1) and b ¢ St(1), g = h and the set of solutions of (2.1) is C(a) or C(b) and
we can apply Lemma, 2.2. Thus we obtain the base of induction.

If gh ¢ X or g,h ¢ Y, depending on case 1 or 2, we can use inductive
assumption for each of the equations entering any of the system. The projection of
the set of solutions is a union of finitely many cosets a data of which is effectively
constructed. The intersection of such sets has again a similar form and can be
effectively computed.

By Lemma 2.4, Lemma, 2.5 and Lemma 2.6 the set of solutions of (2.1) after
projection in Z? again is a union of finitely many cosets a data of which can be
effectively constructed. This finishes the proof of Proposition 3. O

3. Approximation method

We have three different operators M, L and Z. The operator M is the Markov
operator on 12(G), L is the Markov operator on [2(G/P) and Z is the Hecke type
operator in L?(8T, u). First, we are going to provide some approximation method
for the computation of the spectrum.

Let G, = G/Stg(n) be a finite group acting transitively on the set V, Vol =
2™, of the vertices of the n-th level. Let P be a parabolic subgroup determined by
a path e € 0T, i.e. P = Stg(e), and let e, be a vertex of the path e belonging to
the n-th level. Then V,, can be identified with G/Sta(en) =~ Grn/Sta, (€n).

Let us denote P, = Stg(en) and P, = Stg, (en) the image of P, in G, under
the canonical factorization G — G,,. Consider the Schreier graphs J = C(G, P),
Jn = C(G,P,) and J, = C(Gn, P,) constructed with respect to the system of
generators a, b for G and their images in G,. These graphs are marked with a
distinguished point corresponding to the cosets P, P, and P,. Then J, = C(G, P,)
and J, = C(Gy, P,) are finite, canonically isomorphic graphs and 7, converges to
J in the sense of [19] because P = (oo, Pr.

Let L, be the Markov operator on J,. Then {L,}52, is a sequence of finite
dimensional operators approximating the operator L, i.e. the Kesten spectral mea-
sures of L, converge to the Kesten spectral measure of L and therefore we have
convergence of spectra as well.

Let now &, = {Ey;w € {0,1}"} be a partition of the boundary 0T on 2"
atoms, where F,, is an open and closed subset consisting of paths starting with the
string w.

Let H = L?(0T,u) and H, be a subspace of H spanned by characteristic
functions of atoms of the partition £,. Then dimH, = 2" and H, is invariant
with respect to the unitary representation m, determined by the dynamical system
(G, 8T, 1) because any automorphism of a tree permutes the atoms of the partition
én-

Let m, = 7|3, . It is easy to see that this is a permutation-like representation
of a group G arising from the action of G on the set of 2" atoms of &,. This is
not a faithful representation and the factorization by the kernel gives a faithful
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permutation-like representation 7, of G, on V,. From these considerations we
conclude that 7, is isomorphic to the quasi-regular representation Ag,p, and 7y, is
isomorphic to Ag i

The Hecke type operator for the representation Ag,p (the average sum of op-
erators, corresponding to generators) is equivalent to the Markov operator L on
the Schreier graph J and similarly the operators Ag/p,, Ag, /p are equivalent to
the operator L,. Let Ag be the regular representation and let sp(Ag,p) denote the
spectrum of the corresponding Markov operator.

ProOPOSITION 4 ([1]). Let G be amenable. Then
sp(Agyp) = sp(m) = | sp(ma) € sp(Na)-
n>0

We do not know if the group studied in this paper is amenable. However we
are able to use

ProprosITION 5 ([1]). If either P or G/P is amenable then

sp(Ag/p) = sp(m) = U sp(7n)- FIGU
n>0
4. Spectrum of the automaton ie. F71(T) =
There are two natural ways to associate to an automaton A the spectrum sp(A). LEMMA 4.
The first one is sp(m) where 7 is the unitary representation of G(A) described in
Section 3 and the second one is sp(Ag(a)/p) for the corresponding quasi-regular
representation. In case where the action of G on the corresponding tree T' is con- Proor. F
tracting these two spectra coincide (as sets), because in this situation the graph LEMMA 4

S(G, P) has polynomial growth (see [1]) and thus G/P is amenable. As follows from such that AC =

Theorem 1.5 j) we are exactly in this situation, as G/P has polynomial growth.
There is also no dependence on the path e determining the parabolic subgroup as
for any &, v € OT the corresponding Schreier graphs are locally isomorphic and
therefore they have the same spectra.

For the study of sp(A) of the automaton from Figure 1 let us introduce two

parameter matrix and its determinant:
Qn(m ) = an+ay’ +plbn+b,1) = A,
Up(p, A) = det(an +apt + plbe +0;1) = A).

Applying ¢
]Iln'H- (/1'7 )‘)

Forn=20,1

Uy = 242p— A,

U = (2+2p—=XN)2-2u-N).
Thus the s

solutions of the
of Theorem 4.1.

Let also
Q(w,N) =m(a) +m(a™") + p(x(b) + 7(b71)) — A

THEOREM 4.1. The spectrum & of Q(u, )), i.e. the set of pairs (u, \) (includ-
ing multiplicities) for which the operator Q(u, \) is not invertible, is invariant with
respect to the map F : R? — R? given by

F:{ A -2 22N

Let

W
A—=2 ’
uwo - R
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FIGURE 2. The histogram of the spectrum of the automaton A

ie F7L(X)=1.
LEMMA 4.2. Ifn > 1 the following recursion holds:
Unp1(p, A) = p° U (F(A 1)) -

ProoF. First of all let us recall a well known fact (see for instance [19])

2n+1

LEMMA 4.3. Let A, B,C and D be n by n matrices with complex coefficients
such that AC = CA. Then

det( A B ) — det(AD — CB).

C D
Applying the above formula we get
Uny1(m,A) = det(ans +ayta + plbnss +b5y) — A)

-1
= det ( ,J,(i + Zn) b/:(i ZF;%”—)A )
= det((2—A)(bp + b7 = N) — p?(1+an)(1+a3h)).
= det(—p2(an +a )+ (2= N (bp + 551 — 2p* + A2~ X))
_ #2n+1\11n ()\ ;2, —o_ A2 ; )x)) _ /J2n+l‘I’n (FO\, ).
7 7
Thus the solutions of the equation W,41(u,\) = O are the preimages of the

solutions of the equation ¥, (u, A) = 0. Using Proposition 5 we obtain the statement
of Theorem 4.1. J

Let

QO(“UA) = 2+2M_A7
P1(p,A) = 2-2u—A
By(p, ) = 4P +4- N2,
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and in general

\I’n(u, )\) = @0@1 . @n.

It is easy to see that if n > 1 the recursion

Bny1(p, A) = 4" n (F (1, A)
holds, which is similar to the recursion for ¥,.

From Theorem 4.1 we see that the spectral properties of the automaton A (or a
group G) depend very much on dynamical properties of the map F'. The dynamic of
the rational map of the plane in the general case is very complicated and probably
this is also the case for F. We hope in future to get more detailed picture for
iterations of F'. Here we provide just first observations.

The essential difference from the examples considered in [1] and [19] is that
the curves F~1(g) are not union of lines and hyperbolas and the degree of them
is increasing. This makes the study of F (and the study of the spectrum) more
complicated.

We know that

spectrum = U F-"(g)

n=0

where ¢ is the curve 24 + 2 — A = 0. The only fixed points of F' are solutions of

pt— b +2p—4=0,

A=pd42

Thus the only real fixed points of I are

(V2,2v2 +2),
(—v2,-2v2+2).

(1o, Mo)
(p1, A1)

i

Il
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‘We have the following decomposition into irreducible polynonﬁials:

Ui, A) = 2u+2-)
Ua(p, A) = —(2p—2+N)(2p+2-N),
Ts(, ) = (2u+2-N)2u—2+ M) — X2 +4)
Ta(p,A) = —(=2+N)@2u+2-2)(2u—2+X)
(202 =8 — A3+ 4h + 4420 (4p% — N2 + 4)
Ts(p,A) = (=2-+N22u+2-N)(2p—2+N)(4p?+2) - )\?)

(Ap2 +4— 22)(4p2X — 8 + 40 4202 — \3)
(16u* X — 8u2 X3 + 1642 )\% + 82\ — 1642
+A% —4X* + 1607 — 16))

Te(p,A) = —(—2+2)3Q2u—-2+N)2u+2-N)
(207 — 8 — A3 44\ + 4420 (4p% — N2+ 4)
(162X — 1642 + 812X — 16X + 16p222 + 1622 — 82 )3
—4A %) (8ut — 16 + 12120 4+ 16X — 6202 — 403 1 0%
(—8A8 4+ 16A7 — 38442\ — 1601823 — 3200222 4 72u% )3
—14p2 07 — 512)\% 4 2562 + 256X — 608u*\ + 608u*)\2
+128)0% + 256)3 + 12818\ + 736123 + 3201807 + 965X
=272\ — 160A° + 1364423 — 2881 A% + 32X\8 + \°
—104u2 )5 4 842 X6 — 1928) (44 + 21 — A?)2,

The corresponding curves are drawn in Figure 3. The equation ¥,(1,A) =0
gives the spectrum of the n-th approximation of the spectrum of the Hecke type
operator for Z (or in our case the Markov operator M ). Therefore sp(Z) is the set
of points from the intersection of curves from Figure 3 with the line = 1. The
histogram for the 7-th approximation is given in Figure 2.

5. Double action of the automaton A

Let us consider the diagonal action of the group G(A) on the product of two
trees 7' x 7. Such an action can be described by an automaton over the alphabet
D x D whose diagram is presented in Figure 4. ’

Let V,, denote the vertices on the n-th level of T'. We remark that

LEMMA 5.1. The unitary representation corresponding to the diagonal action
on Vo x V,, (here we mean the pairs (u,v) with |u| = |v|) contains the unitary
representation corresponding to the action on Vi,. Thus the spectrum of the first
includes the spectrum of the second.

There is the following operator recursion:

1,1 0 0 0

1,5) 0 0
0 (1) o |
0 0 (bb)

(0,, CL) = 8
0
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FIGURE 3. Zeros of U, (u, A)
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0 (a,1) "0 0 adding machi:
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(a,a) (a,b) (a,1)

(b,a)

‘ A 1N\ \

00 01 10 11
FIGURE 4. The double action of the automaton A

1,1y o0 0

0

| o @wy o 0

Lay=1 ( 0 (1,1) o0
0 0 0 (1,b)

wp=| &9

1,1 o0 0 0
(1,1) = 0

0 0 (1,1) 0
o 0 0 (1)

The computer experiment, which can be used for computation of the spectrum,
for the 7-th approximation gives the picture of the histogram (see Figure 5) which
shows the disappearance of all gaps in the spectrum. Perhaps this means that
the spectrum of the Laplace operator on the group G has no gaps, but further
investigation in this direction is necessary. :

6. The Brunner-Sidki-Vieira group

Let H be the group generated by the automaton B from Figure 6. Then

H = (u,7) where 7 = (1,7)e and p = (1,7 ')e. The generator 7 is the so called
adding machine [23].
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This group was investigated in [6] where it was proven that H has the following
presentation in generators a =7, b = Tpt

H = (a,bJ¢"(r), €*(r"), k > 0),
where = [b,b3], 7' = [b,6°"] and £ is a substitution defined by &(a) = a?, £(b) =
a’b~1a?.
PROPOSITION 6. H embeds into a finitely presented group H which is an as-
cending HNN extension of H. Ezplicitly

H= <a7batia't = a'zvbt = G‘Qb—laza [b> ba] =1, [b) ba3] = 1>

PROOF. The substitution ¢ induces an endomorphism of H. Moreover we have

SPECT

Ficur
Vieira

LEMMA 6.

for every g € 1

Proor. A
m2(§(a))
m2(£(0))

Thus £ is i1

the relations in
proof of Theore

ProprosiTI
5. L=1 and fo
(6.1)
_ PrOOF. Be
Inequality (6.1)
TH, K, /J‘2a T—lA

(6.2)
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LEMMA 6.1. For the canonical projection my : H — H on the second coordinate

) o1 |  mE@) =g
for every g € H.

PROOF. As the group H is generated by a and b this follows from
m(§(a)) = m(a®) =m(r?) = m((r,7)) =7 =q,
m(E0) = ma(a®?) = ma(r?(ru ) 0) = ma((7%, ) = 7t = b
O
Thus ¢ is injective. For the ascending HNN extension
H = (H,t;t"ht = £(h), h € H)

the relations in the above presentation can be easily reduced (similarly as in the

proof of Theorem 1.7) to the form as in Proposition 6. ]
eira group PROPOSITION 7. The group H is contracting with parameters \ = %,C =
5 L=1 and for any h € H, h = (h1, hy)e’, where i € {0,1} we have
1as the following (6.1) |h] > [hy| + |hal.

PROOF. Because for the generators we have 7 = (1,7)e and p = (1, u™%)e the
inequality (6.1) is clear. All words of length two, up to taking the inverses, are 72,

(a) = a2, £(b) = Th, BT, 4%, 771, T~ For the elements corresponding to these words we have
? = (r,7)
o o= (ut,7)
which is an as 62) 'u,g _ (Tylu—l) ;
peoo= (wtp™h) '
1> ; T /il' = ((T-la.u'—l)a (1$ 1)) i
~ Tt o= (L), (7)) |

Toreover we have
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and we have reduction of the length on the second level by % Therefore the
statement about the contractness holds for all words of length 2. Up to adding or
removing one letter, every non trivial word can be written using a product of words
~from (6.2). Thus for C' = % we get the contraction with coefficient A = %. O

By Proposition 3.13 from [2] this implies

COROLLARY 3. The Schreier graphs S(H, P) where P is the parabolic subgroup,
have polynomial growth. In particular the H space H/P is amenable and for the
operators corresponding to the automaton B we have sp(Z) = sp(L) = sp(M) and

1€ sp(2).
A similar statement holds for the group G. The Schreier graph of G is closely

related to the mapping z — 22 — 1 ([3]).
Unfortunately it seems that the study of spectral properties of the automaton

given by Figure 6 is rather a harder problem than for the automaton given by
Figure 1. At the moment we do not know if there is a map for which the analogue

of Theorem 4.1 holds.

The following two propositions have the proofs similar to the one given in [19]
so we will omit them. We heard from S. Sidki that Proposition 8 was also proven

by Edmeia F. da Silva.
PROPOSITION 8. The group H does not contain F.
PROPOSITION 9. The group H is not in the class SG.

As this finitely presented group H is an ascending HNN extension of H, these

groups are simultaneously either amenable or not, like in Corollary 2.
The histogram of the 7-th approximation of the spectrum of the operator Z for

the group H is given in Figure 7.
The next statement gives a closer relation between G and H.

PROPOSITION 10. The group H embeds in G which is a closure of G in Aut(T).
ProoF. Consider the element p € G
p=a"1b=(1,b"ta)e = (1,p M.

Thus p is the initial automaton which coincides with the automaton p and so p = [
and p € G. Also consider the element v € G given as an infinite product

v =ab(c,1)(¢,1,1,1)(c,1,1,1,1,1,1,1) ...,
where ¢ = [a,b]. For this element one can check the relation v = (1,v)e and so as
an automorphism of a binary tree v coincides with the automorphism 7.
7. Conjugacy problem for H

In this section we solve'the conjugacy problem for H = (7, 1) in a similar way
we did this for G.

LEMMA 7.1. The equation in f
(r€) =y

where €, = £1 are fized has no solution.
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In the cas
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PRrROOF. We will prove this for €, = 1 as other cases are similar. Suppose that
the equation

(7.1) | (") = u

has a solution and let us take f to have the minimal length. Clearly this length
has to be at least 2. Now f = ((f), f@)ei, (fO), f®)ed)ek, where i, 5,k € {£1}.
Thus we get

(0]
(N =p

forsome ! € {1,...,4} which gives a desired contradiction because H is contracting.
|

LEMMA 7.2. For the centralizers C(7) and C(u) of the elements T and p we
have:

C(r) = (r),
Cu) = ().

ProoOF. We will prove it for C'(T) the proof for C'(p) is similar. Suppose
that C(7) # (7) and let z € C(7) \ (7) be of minimal length. We have z = (z,y) or
z = (z,y)e for some z,y € H. -

In the case z = (x,y) because z € C(7) we get x = y and = € C(7). By (6.1)
we have |z| > |z| + I:L'] which implies |z| < |z|. By miminality of |2| we have z = 7*.
But then z = (7%, 7%) = 72% which gives the desired contradiction.

In the case z = (z,y)e because z € C(r) we get 7z = y and z € C(7). By
(6.1) we have |z| > |z| + |rz| which implies |z| < |2|, unless £ = 7! which implies
z = 77!, By minimality of |2| we have z = 7*. But then z = (%, 7F+1) = 72k +1
which gives the desired contradiction. O

Theorem 1.1 for H follows from
PROPOSITION 11. For any pair g,h € H solutions of the equation
(7.2) g’ =h

in the group H constitute either an empty set or in projection on Z? = H/H' give
a set Z = Z(g,h) which is a union of finitely many cosets wpCy of subgroups Cj
in Z2.

Given (g,h), the set Z can be constructed effectively by producmg elements
wy, € Z2 and generating sets for subgroups C.

Indeed this implies Theorem 1.1 because g and h are conjugated if and only if
the set of solutions of (7.2) is nonempty.
ProOF. We use here the fact that H/H’ ~ Z? which can be found in [6].

Proposition 11 will be deduced from the following lemmas.

LEMMA 7.3. We have
Stg(1) = (7%, 4%, ).

PROOF. Sty (1) consists of elements which are products of 72, u?, 7+1u+!,
2, pElrEL All these elements belong to (72, u2, 74). O
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LEMMA 7.4. Sty (1) after abelianization can be iieﬁtiﬁed with a subgroup Z?
in (Z2 x Z2) generated by elements (T,7), (=T, Y), (u=1,7), where T is the image
of z in H/H'.

PRrOOF. This follows from the fact that Stz(1) is generated by 72 = (1,7),
2 = (b, ), Tu = (=1, 7) and the vectors (7,7), (u=%, p71), (w71, 7) in 7oL’
are ‘linearly independent. 0

LEMMA 7.5. Let X = Jwdi, Y = Jv;B; be unions of finitely many cosets
in Z2 (A;, Bj < H). Then there ezists a union Z = | JwiCr of finitely many cosets
in Z2 (Cy, < Z?) such that the projection in 7? = H/H' of the set
(73) ’ {feStG(l) :f:(fO:fl))%EXaﬁ-EY}

coincides with the set' Z.
Moreover the set Z can be constructed effectively by given data for X, Y. A

similar statement also holds in a situation when (7.8) is replaced by

(7.4) {f & 8te(1): f=(fo, h)e Jo€ X, i €Y}
PROOF. We have the following commutative diagram of maps and inclusions:
H x4 Hyp =77
v v
Sta(l) S p(Sta(l)) =727
¢l T¢

HxH> ¢Sta())) B ~ 73 < 72X 72~ Hey x Hap

In the above diagram p is a homomorphism of abelianization of H, ¢ is the
canonical embedding described in Section 1.4 and B is the image of ¢(Stm(1))
under p x p. The existence of the homomorphism ¢ follows from the fact that

¢(H) > ¢(H') > H' x H' which is proved in [6]. The fact that B ~ 72 follows from -

Lemma 7.4.
LEMMA 7.6. Let x,y € H. Then (z,y) € ¢(Stw (1)) if and only if (Z,7) € B.

PROOF. It is obvious that if (z,y) € ¢(Stg(1)) then (Z,7) € B. In order to
prove the converse we have to show that if (z,y) € Ker(p x p) then (z,y) € H.
The last follows from the fact that ¢(H) > ¢(H') > H' x H'. O

Now the set (7.3) can described as
E(X xY)NB)

and therefore they are unions of finitely many costes the data of which can be
determined effectively. The second part of the statement can be proved by reduction
to the first part in a similar manner it was done in Lemma 2.4. This finishes the

proof of Lemma 7.5. O

We use the induction on the number |g| + || > 2. If [g] = [h] = 1 then it is
clear by Lemma 7.1 and Lemma 7.2.
So assume |g| + |h| > 3 and use Lemma 2.6. As |g| > 1 or |h| > 1 we can use

inductive assumption for each of the equations entering any of the system. The
projection of the set of solutions is a union of finitely many cosets a data of which
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is effectively constructed. The intersection of such sets has again a similar form
and can be effectively computed.

For the group H also holds the analogue of Lemma 2.5. Therefore by Lemma 7.5
and Lemma, 2.6 the set of solutions of (7.2) after projection in Z? again is a union
of finitely many cosets a data of which can be effectively constructed.

This finishes the proof of Proposition 11. O

Acknowledgment We would like to thank Said Sidki for useful remarks.
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