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1 Introduction

The purpose of this paper is to study, both analytically and numerically, the wave
equation on the unit interval endowed with a self-similar fractal measure. Previous
studies of wave equation on fractals, including numerical approximations, were pub-
lished in [20,24–26,33,59]. All these works have some, although not direct, relation
to the classical paper [55], but are more directly related to the fractal Fourier analy-
sis, see [57,58]. Our computational methods mostly come from the theoretical papers
[9,10,61,62] that develop so-called spectral decimation method in the form applicable
for to numerical analysis.

In general, there is a large literature dealing with analysis and probability on fractals
in mathematical terms, such as [8,11–14,16,28,32,34–37,39–41,45,53,54,60],[and
references therein] and also extensive mathematical physics literature, including
[1,2,6,7,21,22,27,29,34,47,48]. Of particular interest are the works studying the
appearance of fractals in quantum gravity, including [3–5,17–19,23,31,42,44,49,50].

We consider a situation in which a good enough (fractal) Laplacian � is defined
on L2(K , μ), where a compact set K (the unit interval in our case) equipped with a
(fractal) Borel measure μ. This Laplacian � is a point-wise limit or as the generator
of a Kigami’s resistance form (see Proposition 2.3), and one can extend some of the
classical numerical techniques to approximate some (intrinsically smooth) solutions
of the wave equation initial value problem

⎧
⎨

⎩

∂t t u = −�u on K × [0, T ],
u(·, 0) = φ on K ,

∂t u(·, 0) = ψ on K .

(1.1)

As is well known, if the spectrum of the Laplacian is discrete, then the solution of
the wave equation can be represented in terms of L2(μ)-eigensolutions {λk, fk}∞k=0
of the Laplacian �, with λ0 � λ1 ≤ λ2 ≤ · · · ↑ ∞ and � fk = λk fk . Writing

φ =
∞∑

k=0

αk fk and ψ =
∞∑

k=0

βk fk, (1.2)

where αk = 〈φ, fk〉L2 and βk = 〈ψ, fk〉L2 , one finds that u admits the series repre-
sentation

u(x, t) =
∞∑

k=0

αk fk(x) cos
(
t
√

λk

)
+

∞∑

k=kmin

βk√
λk

fk(x) sin
(
t
√

λk

)
, (1.3)

where kmin := min{ j ∈ N ∪ {0} : λ j > 0}. It is known that the series point-
wise converges poorly and the numerical approximations are very unstable unless the
smoothness of solutions can be controlled.

In our setup, K = I and μ is the fractal measure defined in Sect. 2. For simplicity
we assume that the initial velocity ψ ≡ 0, and so the solution to (1.1) is
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u(x, t) =
∞∑

k=0

αk fk(x) cos
(
t
√

λk

)
. (1.4)

If we theoretically assume that φ is given by a δ-impulse at point 0, φ = δ0, then
we have that αk := ∫

I fk(x)δ0(x) μ(dx) = fk(0). Note that δ0(x) is not a function
by the unit atomic measure at zero, and so the integral in this definition of αk is to be
understood as a formal expression, as in the theory of distributions (for the classical
version, see [56], and for the fractal version, see [52]). This approach on a fractal space
does not allow an accurate numerical approximation of the solutions.

Thereforewe concentrate on a situationwhere the initial condition is highly localize
function, but is smooth in intrinsic sense, and we can show that the approximating
series converges uniformly. This is an illustration of the general principle of Stricharz
[58]: Laplacians on fractals with spectral gaps have nicer Fourier series. However,
the abstract result [58] does not include the estimate of the remainder which we obtain
in our work.

Numerically, we can only compute the eigensolutions of the fractal Laplacian up
to a finite level, so in practice we solve the “approximate” wave equation

⎧
⎨

⎩

∂t t un = −�nun on Vn × [0, T ],
un(·, 0) = δ

(n0,n)
0 on Vn,

∂t un(·, 0) = 0 on Vn,
(1.5)

where δ
(n,n0)
0 =

3n0∑

k=0

αk fn,k is the approximate δ-function built up from the first |Vn0 | =
(3n0 + 1) eigenfunctions of �n (with �n fn,k = λn,k fn,k), and αk := αn0,k ≥ 0 are
the coefficients found in Sect. 3.3. Throughout the section n0 will be fixed, and we
will not mention n0 explicitly unless the context demands it. The solution to (1.5) has
the series representation

un(x, t) =
3n0∑

k=0

αk fn,k(x) cos
(
t
√

λn,k

)
for all x ∈ Vn and t ∈ [0, T ]. (1.6)

For each t , we harmonically extend the function x �→ un(x, t) from Vn to I . This
procedure allows us to compare un(x, t) with

ũ(x, t) =
3n0∑

k=0

αk fk(x) cos
(
t
√

λk

)
for all x ∈ I and t ∈ [0, T ], (1.7)

the solution of the wave equation on (I, μ) whose initial condition is the truncated
series representation of the δ-impulse. We note that ũ is differentiable in t and con-
tinuous in x . However it is highly localized function at t = 0, and therefore it mimics
wave propagation from a delta function initial values.



J Fourier Anal Appl

Our paper is organized as follows. Section 2 contains the construction of the unit
interval as a p.c.f. fractal, definition of the Dirichlet energy form, the definition of
the corresponding Laplacian and its associated eigenvalues. In Sect. 3 we use spectral
decimation to construct the eigenfunctions of the discrete Laplacian and prove that
their limit is continuous. The section concludes with the spectral decomposition of
the delta function. Section 4 contains various technical estimates needed to show the
convergence of solutions of the wave equation. In Sect. 5 we give theoretical bounds
on the approximations to the wave equations solutions and convergence information.
Section 6 contains the numerical computation of the wave equation solutions, their
associated eigenfunctions, and the Fourier approximations for the delta function.

Remark 1.1 Theoretically, the infinite propagation speed for wave equation solutions
was established in [43] on some p.c.f. fractals with heat kernel estimates

c1
V (x, t1/β)

exp

(

−c2

(
d(x, y)β

t

)1/(β−1)
)

(1.8)

≤ p(t, x, y) ≤ c3
V (x, t1/β)

exp

(

−c4

(
d(x, y)β

t

)1/(β−1)
)

for positive constants c1, c2, c3, c4, x, y ∈ I , t ∈ (0, 1], where β = 2/dS and
V (x, r) = μ(Br (x)). Kigami in [38] obtained such estimates in a situation which
resembles, but is technically different, from ours. We conjecture that an analogue
(1.8) holds in our situation, but proving this would lie outside of the scope of our
paper.

2 Eigenvalues of the Fractal Laplacian on an Interval

In this section we define a particular self-similar structure on the unit interval. In this
way, it can be seen as a p.c.f fractal (see [11,16,36,37,62,63]). In these papers the
reader can find these definitions and an exposition of the general theory of Dirichlet
forms on fractals, as well as further references on the subject. Herein we will use three
contractions for simplicity. However, one could perform the same construction using
any number of contractions in order to obtain a fractal Laplacian on the unit interval.

To define the standard Laplacian, we can use three contractions F1, F2, F3 : R →
R Fj (x) = 1

3 x + 2
3 p j with respective fixed points p1 = 0, p2 = 1

2 , p3 = 1. Then the
interval I=[0, 1] is a unique compact set such that I = ⋃

j=1,2,3
Fj (I ). The discrete

approximations to I are defined inductively by Vn = ⋃

j=1,2,3
Fj (Vn−1) = { k

3n
}3n

k=0,

where V0 = ∂ I = {0, 1} is the boundary of I . For x, y ∈ Vn we write y ∼ x if
|x − y| = 3−n .Then the standard discrete Dirichlet (energy) form on Vn is

En( f, f ) = 3n
∑

x,y∈Vn
y∼x

( f (y)− f (x))2,
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and the standard Dirichlet (energy) form on I is E( f, f ) = lim
n→∞ En( f, f ) if this

limit exists. We call a function h harmonic if it minimizes the energy subject to the
constraint of the given boundary values. Then we have that En+1( f, f ) � En( f, f ) for
any function f , and En+1(h, h) = En(h, h) = E(h, h) for a harmonic h. A function h
is harmonic if and only if it is linear. If f is continuously differentiable then

E( f, f ) =
∫ 1

0
| f ′(x)|2dx .

The domain F of this standard Dirichlet (energy) form E on I coincides with the
usual Sobolev space H1[0, 1]. Moreover E on I is self-similar in the sense that

E( f, f ) = 3
∑

j=1,2,3

E( f ◦Fj , f ◦Fj ).

The corresponding standard discrete Laplacians on Vn are

�n f (x) = 1
2

∑

y∈Vn
y∼x

( f (x) − f (y)), x ∈ Vn\V0,

and the (renormalized) Laplacian on I is

� f (x) = lim
n→∞ 9n�n f (x) = −1

2
f ′′(x)

for any twice differentiable function. In our convention the Laplacian is a nonnegative
operator. For any twice differentiable function f , the Gauss–Green (integration by
parts) formula applies

E( f, f ) = 2
∫ 1

0
f � f dx + f f ′

∣
∣
∣
1

0
.

We can modify the above construction with the introduction of the parameter p,
where 0 < p < 1, and write q = 1 − p. Later we will show that these parameters
give the transition probabilities of a random walk on the unit interval. Now, we define
contraction factors (or resistance weights)

r1 = r3 = p

1 + p
and r2 = q

1 + p
, (2.1)

and measure weights

m1 = m3 = q

1 + q
and m2 = p

1 + q
. (2.2)

Note that in general the choices of resistance and measure weights are essentially
free, up to constant multiples, according to Kigami’s theory of Harmonic calculus on
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p.c.f. self-similar sets [36,37], but wemake a unique choice that leads to a manageable
spectral analysis, as explained in [9,53,60–63]. We do not give a complete explana-
tion here because it would require too much space. In short, the spectral decimation
requires a symmetry m1 = m3. Moreover, the spectral decimation also requires that
the resistance weights are, up to a constant, reciprocals of the measure weights, and

m1 + m2 + m3 = r1 + r2 + r3 = 1. (2.3)

Thus, our system essentially has one independent parameter, which we denote p
and express everything else in terms of this parameter.

We may now define the three contractions: F1, F2, F3 : R → R with respective
fixed points p1 = 0, p2 = 1

2 , p3 = 1 in terms of resistances which depend on our
parameter p

Fj (x) = r j x + (1 − r j )p j . (2.4)

Then the interval I=[0, 1] is the unique compact set such that

I =
⋃

j=1,2,3

Fj (I ). (2.5)

The discrete approximations to I are defined inductively by

Vn =
⋃

j=1,2,3

Fj (Vn−1), (2.6)

where V0 = ∂ I = {0, 1} is the boundary of I .
The following definitions and results come directly from the more general theory

in [11,16,36,37], so we omit the proofs.

Definition 2.1 The discrete Dirichlet (energy) form on Vn is defined inductively

En( f, f ) =
∑

j=1,2,3

1
r j
En−1( f ◦Fj ). (2.7)

with E0( f, f ) = ( f (1) − f (0))2, and the Dirichlet (energy) form on I is

E( f, f ) = lim
n→∞ En( f, f ) =

∫ 1

0
| f ′(x)|2dx (2.8)

The domain F of E consists of continuous functions for which the limit is finite,
and coincides with the usual Sobolev space H1[0, 1].

The existence of this limit is justified by the next proposition.

Proposition 2.2 We have that En+1( f, f ) � En( f, f ) for any function f , and

En+1(h, h) = En(h, h) = E(h, h) (2.9)

for a harmonic function h.
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Proposition 2.3 The Dirichlet (energy) form E on I is local and regular, and is self-
similar in the sense that

E( f, f ) =
∑

j=1,2,3

1
r j
E( f ◦Fj , f ◦Fj ). (2.10)

The domain of E , see Definition 2.1, is dense in the space of continuous functions on
I .

The μ–Laplacian �μ, satisfying the following Gauss–Green (integration by parts)
formula

E( f, f ) = C
∫ 1

0
f �μ f dμ + f f ′∣∣1

0, (2.11)

where μ is a unique probability self-similar measure with weights m1, m2, m3, that is

μ =
∑

j=1,2,3

m jμ◦Fj . (2.12)

can be defined by
�μ f (x) = lim

n→∞
(
1+ 2

pq

)n
�n f (x), (2.13)

where the discrete Laplacians

�n f (xk) =
⎧
⎨

⎩

f (xk) − p f (xk−1) − q f (xk+1)

or
f (xk) − q f (xk−1) − p f (xk+1)

(2.14)

are defined as the generators of the nearest neighbor random walks on Vn with tran-
sition probabilities p and q assigned according to the weights of the corresponding
intervals. The domain of the corresponding continuous Laplacian �μ, defined to be
the set of all continuous function f for which the limit (2.13) exists and is continuous,
is dense in the space of continuous functions on I .

Note that by definition p = m2
m1+m2

and q = m1
m1+m2

. The transition probabilities p
and q can be assigned inductively as shown on Fig. 1.

Proposition 2.4 (Self-similarity of the Laplacian)

�μ(u ◦ Fw) =
(

1 + 2

pq

)−|w|
(�μu) ◦ Fw. (2.15)

The above construction of the standard Laplacian and the associated Dirichlet form
on I corresponds to the case p = 1

2 . In the p �= 1
2 case, a change of variables can either

turn the Dirichlet form into the standard one, or turn the μ-measure into Lebesgue
measure, but not both at the same time. For this reason, different values of p give
different μ-Laplacians even up to a change of variable.
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1

m1 m2 m3

1

1

q p p q

q p p q q p q p p q p q q p p q 1

Fig. 1 Random walks corresponding to the discrete Laplacians �n

We can apply the classical result of Kigami and Lapidus [39] to show that both the
Dirichlet and the Neumann Laplacians �μ satisfy the spectral asymptotics

0 < lim inf
λ→∞

ρ(λ)

λds/2
� lim sup

λ→∞
ρ(λ)

λds/2
< ∞, (2.16)

where as before ρ(λ) is the eigenvalue counting function, and the spectral dimension
is

ds = log 9

log
(
1+ 2

pq

) � 1, (2.17)

where the inequality is strict if and only if p �= q.
In the lemma below, σ(�n) is the spectrum n of the level n Laplacian �n .

Lemma 2.5 If z �= 1 ± p, then R(z) ∈ σ(�n) if and only if z ∈ σ(�n+1), with the
same multiplicities. Here

R(z) = z(z2 − 3z + 2 + pq)

pq
. (2.18)

Moreover, the Neumann discrete Laplacians have simple spectrum with σ(�0) =
{0, 2} and

σ(�n) = {0, 2}
n−1⋃

m=0

R−m{1 ± q} (2.19)

for all n > 0. In particular, for all n > 0 we have 0, 1 ± q, 2 ∈ σ(�n). Also, for all
n > 0 we have 1 ± p ∈ σ(�n) if and only if p = q.

Proof In this case, according to [61, Lemma 3.4], [45, (3.2)], we have that R(z) =
ϕ1(z)

ϕ0(z)
, where ϕ0 and ϕ1 solve the matrix equation

S − z I0 − X̄(Q − z I1)
−1X = ϕ0(z)H0 − ϕ1(z)I0. (2.20)

with S = I0 = I1 = I2×2, X = −q I2×2, X̄ = −I2×2,

Q =
(

1 −p
−p 1

)

, (2.21)
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Fig. 2 Sketch of the cubic
polynomial R(z) associated with
the fractal Laplacians on the
interval

max(p, q)(0, 0)

(2, 2)

and

H0 =
(

1 −1
−1 1

)

. (2.22)

Solving this we obtain

ϕ0(z) = pq

z2 − 2z + 1 − p2
(2.23)

and

ϕ1(z) = z(z2 − 3z + 2 + pq)

z2 − 2z + 1 − p2
. (2.24)

Then we use the abstract spectral self-similarity results (see [45,61]) to find that
σ(�n+1) = R−1{σ(�n)}. Note that 0 and 2 are fixed points of R(z). The preimages
of 0 are 0, 1+ p and 1+ q. The preimages of 2 are 2, 1− p and 1− q. If p �= q then
1 ± p are not eigenvalues because they are poles of ϕ0(z) (see [45,61]). ��

Remark 2.6 In Fig. 2 we give a sketch that describes the complex dynamics of the
family of cubic polynomials associated with the fractal Laplacians on the interval (see
[45,61]). The curved dotted line corresponds to the case when p = 1

2 and the Julia
set is the interval [0, 2]. For any other value of p (0 < p < 1, p �= 1

2 ), the graph
of the polynomial R(z) behaves like the shown solid curved line. It is easy to see
that then the Julia set of R(z) is a Cantor set of Lebesgue measure zero. Note that
the transformation p �→ 1 − p does not change the polynomial R(z), although the
Laplacians �μ are different.

3 Spectral Decimation and Eigenfunction Approximations in the Limit

Thus far we have described the spectral decimation which allows us to characterize the
eigenvalxues of the fractal Laplacian (Lemma 2.5).We now turn to the eigenfunctions.
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3.1 Eigenfunction Extension

In this subsection we demonstrate how to extend an eigenfunction fn,∗ to an eigen-
function fn+1,∗ using spectral decimation.

To fix notation, let x0 < y0 < y1 < x1 be four consecutive vertices in Vn+1 with
x0, x1 ∈ Vn and y0, y1 ∈ Vn+1\Vn . Given an eigenfunction fn,∗ of�n with eigenvalue
λn,∗, we define its extension fn+1,∗ to Vn+1 according to the formulas

fn+1,∗(y0) = q(1 − z) fn,∗(x0) + pq fn,∗(x1)
(1 − p − z)(1 + p − z)

, (3.1)

fn+1,∗(y1) = q(1 − z) fn,∗(x1) + pq fn,∗(x0)
(1 − p − z)(1 + p − z)

. (3.2)

Here we assume z �= 1 ± p. The claim is that fn+1,∗ is an eigenfunction of �n+1
with eigenvalue z = R−1(λn,∗), where R is the cubic polynomial which appeared
in Lemma 2.5. As explained in the proof of 2.5, the preimage R−1([0, 2]) has three
branches, so each eigenvalue λn,∗ on level n generates three new eigenvalues λn+1,∗
on level (n + 1). The only exceptions are the eigenvalues 0 and 2, each of which
generates two new eigenvalues because 1 ± p are forbidden (see Fig. 3). This means
that each eigenfunction extends to either two or three eigenfunctions at the next level.

Theorem 3.1 (Eigenfunction extension) Suppose fn,∗ : Vn → R is an eigenfunction
of �n with eigenvalue λn,∗. Let fn+1,∗ : Vn+1 → R be an extension of fn,∗ to Vn+1
defined via (3.1) and (3.2), with z �= 1 ± p. If

λn,∗ = R(z) = z3 − 3z2 + (2 + pq)z

pq
, (3.3)

then fn+1,∗ is an eigenfunction of �n+1 with eigenvalue z = R−1(λn,∗).

Proof We break the proof into two parts. Given fn,∗, we first show that the following
are equivalent for an extension fn+1,∗ of fn,∗:

λ0,0 = 0 λ0,1 = 2

λ1,0 = 0 λ1,2 λ1,1 λ1,3 = 2

λ2,0 = 0 λ2,6 λ2,2 λ2,4 λ2,8 λ2,1 λ2,5 λ2,7 λ2,3 λ2,9 = 2

Fig. 3 Eigenvalues of the first three fractal levels arranged in a rooted tree and numbered in increasing
order
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(1) fn+1,∗ is defined via the extension formulas (3.1) and (3.2).
(2) fn+1,∗ satisfies the eigenvalue equation �n+1 fn+1,∗ = z fn+1,∗ on Vn+1 \ Vn .

After establishing this equivalence, we proceed to show that fn+1,∗ is an eigen-
function of �n+1 on all of Vn+1, provided that (3.3) holds.

First we show the equivalence of (1) and (2). Assuming (2), we apply the eigenvalue
equation �n+1 fn+1,∗ = z fn+1,∗ at the points y0, y1 ∈ Vn+1 \ Vn to obtain, by using
both formulae in (2.14) depending on the point x (in fact, to cover these cases as
well as the case x ∈ V0, i.e. x is a boundary vertex, below we use the parameters
a ∈ {p, q, 0, 1}, and b = 1 − a, instead of p and q = 1 − p),

(1 − z) fn+1,∗(y0) = p fn+1,∗(y1) + q fn+1,∗(x0), (3.4)

(1 − z) fn+1,∗(y1) = q fn+1,∗(x1) + p fn+1,∗(y0). (3.5)

This is a linear system of 2 equations with 2 unknowns ( fn+1,∗(x0) and fn+1,∗(x1)
are known, fn+1,∗(y0) and fn+1,∗(y1) are unknown), which has a unique solution.
After some elementary calculation, and using the fact that fn+1,∗|Vn = fn,∗, it is easy
to verify that fn+1,∗(y0) and fn+1,∗(y1) are uniquely expressed in terms of fn,∗(x0)
and fn,∗(x1) according to the extension formulas (3.1) and (3.2), which shows (1).
The reverse implication (1) ⇒ (2) is straightforward.

At this point we have proved that the eigenvalue equation �n+1 fn+1,∗(x) =
z fn+1,∗(x) holds for x ∈ Vn+1 \ Vn . However, we have neither used the property
of the eigenfunction fn,∗, nor related z to the eigenvalue λn,∗. To do so we must check
the �n+1-eigenvalue equation on Vn .

We introduce some additional notation. Fix an x ∈ Vn . Let x ′
0, x

′
1 ∈ Vn be adjacent

to x on level n, and y′
0, y

′
1 ∈ Vn+1 \ Vn be adjacent to x on level (n + 1), as shown in

Fig. 8. (If x ∈ V0 = {0, 1}, then there is only one adjacent vertex on level n. Thiswill be
taken care of in the next argument.)We also label the transition probabilities according
to (2.14); see also Fig. 1. The parameter a can be one of {p, q, 0, 1} depending on x .
In particular, to take into account that x ∈ V0 has only 1 adjacent vertex, we set a = 0
if x = 1 and a = 1 if x = 0. The parameter b is set to equal 1 − a.

Now we show that if z �= 1± p and (3.3) holds, then �n+1 fn+1,∗(x) = z fn+1,∗(x)
for x ∈ Vn . By (2.14),

�n+1 fn+1,∗(x) = fn+1,∗(x) − a fn+1,∗(y′
1) − b fn+1,∗(y′

0), (3.6)

�n fn,∗(x) = fn,∗(x) − a fn,∗(x ′
1) − b fn,∗(x ′

0). (3.7)

Using the extension formulas (3.1), (3.2), fn+1,∗(x) = fn,∗(x), and (3.6), we find

(�n+1 − z) fn+1,∗(x) = (1 − z) fn,∗(x) − a

(
q(1 − z) fn,∗(x) + pq fn,∗(x ′

1)

(1 − p − z)(1 + p − z)

)

− b

(
q(1 − z) fn,∗(x) + pq fn,∗(x ′

0)

(1 − p − z)(1 + p − z)

)
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= (1 − z)(1 − p − z)(1 + p − z) − q(1 − z)

(1 − p − z)(1 + p − z)
fn,∗(x)

− pq
(
a fn,∗(x ′

1) + b fn,∗(x ′
0)
)

(1 − p − z)(1 + p − z)
. (3.8)

Using (3.7) we can write

a fn,∗(x ′
1) + b fn,∗(x ′

0) = −(�n − 1) fn,∗(x) = −(λn,∗ − 1) fn,∗(x). (3.9)

This allows us to replace the second term of (3.8), so that the entire (3.8) equals

(1 − z)[(1 − p − z)(1 + p − z) − q] − pq(1 − λn,∗)
(1 − p − z)(1 + p − z)

fn,∗(x)

= −(z3 − 3z2 + (2 + pq)z) + pq − pq(1 − λn,∗)
(1 − p − z)(1 + p − z)

fn,∗(x). (3.10)

Infer that (�n+1 − z) fn+1,∗ = 0 on Vn , and in turn on Vn+1, if z �= 1 ± p and

λn,∗ = z3 − 3z2 + (2 + pq)z

pq
= R(z). (3.11)

��

3.2 Continuity in the Limit

In this subsection, we show that the eigenfunction extension algorithm (Theorem 3.1)
produces a continuous eigenfunction of the fractal Laplacian in the limit n → ∞,
provided that one always chooses the lowest branch of the inverse map R−1 at all
levels n ≥ n0.

Lemma 3.2 Fix n0, k ∈ N∪{0}. Let fn0,k : Vn0 → R be an eigenfunction of�n0 with
eigenvalue λn0,k . Let { fn0+i,k}∞i=1 be the sequence of �n0+i -eigenfunctions extended
from fn0,k via successive applications of Theorem 3.1, where one always chooses the
lowest branch of the inverse cubic polynomial R−1(z) [see (3.3)]. Then

lim sup
i→∞

max
x∈Vn0+i

| fn0+i,k(x)| (3.12)

is bounded.

Proof From Lemma 2.5 we know that λn,∗ = R(λn+1,∗). Assume that the lowest
branch of R−1 is chosen to generate λn+1,k = R−1(λn,k) from λn,k . Observe that R
is concave on [0,min(p, q)]; therefore the graph of R on [0,min(p, q)] lies above
the secant line connecting (0, 0) and (min(p, q), 2) (see Fig. 2). This implies the
inequality

λn,k = R(λn+1,k) ≥ 2

min(p, q)
λn+1,k . (3.13)
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By iterating this inequality, we see that the i-fold preimage λn0+i,k = R−i (λn0,k),
where the lowest branch of R−1 is always chosen, satisfies

λn0+i,k ≤
(
min(p, q)

2

)i

λn0,k . (3.14)

The corresponding eigenfunctions fn0+i,k are generated via Theorem 3.1.
LetMn,k = maxx∈Vn | fn,k(x)|. For each n > n0 and each y ∈ Vn+1\Vn , we use the

eigenfunction extension algorithm (3.1) and (3.2) to arrive at the following estimate:
there exist x0, x1 ∈ Vn such that

| fn+1,k(y)| =
∣
∣
∣
∣
q(1 − λn+1,k) fn+1,k(x0) + pq fn+1,k(x1)

(1 − p − λn+1,k)(1 + p − λn+1,k)

∣
∣
∣
∣ (3.15)

≤ q(1 − λn+1,k)| fn+1,k(x0)| + pq| fn+1,k(x1)|
(1 − p − λn+1,k)(1 + p − λn+1,k)

(3.16)

≤ q

q − λn+1,k
Mn,k . (3.17)

In the second line we used the triangle inequality and the bound λn+1,k < 1, which
can be seen from (3.14). This then implies the estimate

Mn+1,k ≤ q

q − λn+1,k
Mn,k . (3.18)

for all n ≥ n0. Applying (3.18) inductively and using (3.14), we see that for all i ∈ N,

Mn0+i,k ≤ Mn0,k

i∏

j=1

q

q − λn0+ j,k
≤ Mn0,k

i∏

j=1

(

1 −
(
min(p, q)

2

) j
λn0,k

q

)−1

.

(3.19)

Setting γ j =
(
min(p,q)

2

) j λn0,k

q and taking the limit, we obtain

lim sup
i→∞

Mn0+i,k ≤ Mn0,k lim sup
i→∞

i∏

j=1

(
1 − γ j

)−1
. (3.20)

It remains to verify the convergence of the infinite product
∏∞

j=1(1−γ j )
−1, which

is equivalent to showing the convergence of the series
∑∞

j=1 log(1 − γ j )
−1. Observe

that if we set ε j to satisfy (1 − γ j )
−1 = 1 + ε j , then

log(1 − γ j )
−1 = log(1 + ε j ) ≤ ε j (3.21)
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by the inequality 1+x ≤ ex . Moreover, since γ j = Kr j for suitable positive constants
K and r ≤ 1

2 , we can always find a constant K0 such that

ε j = γ j

1 − γ j
= Kr j

1 − Kr j
≤ K0r

j (3.22)

for all sufficiently large j . Since the geometric series
∑

j K0r j converges, this implies

that the series
∑∞

j=1 log(1 − α j )
−1 converges. ��

Now we prove the continuity of the eigenfunction in the limit.

Theorem 3.3 Let { fn0+i,k}∞i=1 be the sequence of�n0+i -eigenfunctions extended from
fn0,k as in Lemma 3.2. Then the limit fk := limi→∞ fn0+i,k is uniform on I , and can
be extended to a continuous function on I .

Proof The key argument is that since the eigenvalues λn0+i,k = R−i (λn0,k) tend to 0
as i → ∞, the eigenfunction extension (3.1) and (3.2) of fn0+i,k to Vn0+i+1 can be
approximated by the harmonic extension of fn0+i,k to Vn0+i+1 as i → ∞, uniformly
on I . Since a harmonic extension on I is continuous in the limit, we deduce that the
limit fk can also be extended to a continuous function.

Define, for each n ≥ n0 and each k, the harmonic extension f̃n+1,k of fn,k to Vn+1.
Using the coordinates x0, x1, y0, y1 introduced before Theorem 3.1,

f̃n+1,k(y0) = fn,k(x0) + p fn,k(x1)

1 + p
, (3.23)

f̃n+1,k(y1) = fn,k(x1) + p fn,k(x0)

1 + p
. (3.24)

Note that these are (3.1) and (3.2) with z = 0.
Let us now estimate | fn+1,k(y0) − f̃n+1,k(y0)|, which equals

∣
∣
∣
∣
q(1 − λn,k) fn,k(x0) + pq fn,k(x1)

(1 − p − λn,k)(1 + p − λn,k)
− fn,k(x0) + p fn,k(x1)

1 + p

∣
∣
∣
∣ (3.25)

=
∣
∣
∣
∣
λn,k(1 + p − pq − λn,k) fn,k(x0) + pλn,k(2 − λn,k) fn,k(x1)

(q − λn,k)(1 + p − λn,k)(1 + p)

∣
∣
∣
∣ (3.26)

Using the triangle inequality and then replacing | fn,k(x0)| and | fn,k(x1)| by the sup
Mn,k = supx∈Vn | fn,k(x)|, we can bound (3.26) from above by

λn,k(1 + p − pq − λn,k)Mn,k + pλn,k(2 − λn,k)Mn,k

(q − λn,k)(1 + p − λn,k)(1 + p)
= λn,k

q − λn,k
Mn,k (3.27)

Since limn→∞ Mn,k is bounded by Lemma 3.2 and λn,k → 0 as n → ∞, the right-
hand side of this inequality tends to 0. The same estimate holds for | fn+1,k(y1) −
f̃n+1,k(y1)|. Since y0 and y1 are arbitrary, we conclude that | fn,k − f̃n,k | converges to
0 uniformly on I . ��
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3.3 Spectral Decomposition of the Delta Function

Let { fn,k}3nk=0 be a complete set of eigenfunctions of �n with corresponding eigenval-

ues {λn,k}3nk=0. Consider the level-n delta function δ
(n)
0 : Vn → R defined by

δ
(n)
0 (x) =

{
1, if x = 0,
0, if x ∈ Vn\{0}. (3.28)

By the spectral theorem, we can find a set of real numbers (or weights) {αn,k}3nk=0
such that

δ
(n)
0 (x) =

3n∑

k=0

αn,k fn,k(x). (3.29)

The sequence δ
(n)
0 approximates a delta function at 0 in the limit n → ∞.

In order to study the wave equation in Sect. 5, we need estimates on the eigensolu-
tions ( fn,∗, λn,∗), as well as information about the weights αn,∗. We will address the
former in Sect. 4, and the latter in the following proposition.

Proposition 3.4 The weights αn+1,∗ can be obtained inductively from αn,∗.

Proof First we fix our convention at n = 0. The two (non-�2-normalized) eigenfunc-
tions f0,1 and f0,2 of �0 are

( f0,1(0), f0,1(1)) = (1, 1) and ( f0,2(0), f0,2(1)) = (1,−1), (3.30)

with corresponding eigenvalue 0 and 2, respectively. It is then easy to see that δ(0)
0 =

1
2 f0,1 + 1

2 f0,2, i.e., α0,1 = α0,2 = 1
2 .

For the iteration step, suppose the weights αn,∗ are known at level n, and we want to
determine the weights αn+1,∗. The idea is to write each contribution αn,k fn,k in terms
of a linear combination

∑
j αn+1,k j fn+1,k j of the (2 or 3) eigenfunctions fn+1,k j which

are extensions of fn,k given by Theorem 3.1.
To make this idea precise without adding too much notation, we fix n and k, and

write f , λ, and α as respective shorthands for fn,k , λn,k , and αn,k . If λ /∈ {0, 2}, then
spectral decimation (Theorem 3.1) implies that f has 3 extensions f1, f2, and f3 to
Vn+1 which are eigenfunctions of �n+1 with respective eigenvalues λ1 ≤ λ2 ≤ λ3.
We would like to find the corresponding weights α1, α2, and α3 by imposing the
following matching condition: For any four consecutive vertices x0 < y0 < y1 < x1
in Vn+1 with x0, x1 ∈ Vn and y0, y1 ∈ Vn+1 \ Vn ,

3∑

i=1

αi fi (x) =
{

α f (x0), if x = x0,

α f (x1), if x ∈ {x1, y0, y1}. (3.31)
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An explicit calculation verifies that with the weights αn+1,∗ generated from this
matching condition, we have

3n+1
∑

k=0

αn+1,k fn+1,k = δ
(n+1)
0 . (3.32)

We now determine the weights. Observe that fi and f agree on Vn by construction.
This together with the matching condition (3.31) at x0 (or at x1) implies that

3∑

i=1

αi = α. (3.33)

Next, using the eigenfunction extension formula (3.1) and the matching condition
at y0 in (3.31), we get

3∑

i=1

q(1 − λi )

(1 − p − λi )(1 + p − λi )
αi = 0. (3.34)

Notice that there is no dependence on f . Similarly, using (3.2) and the matching
condition at y1 in (3.31), we arrive at a third relation

3∑

i=1

pq

(1 − p − λi )(1 + p − λi )
αi = 0. (3.35)

Equations (3.33), (3.34), and (3.35) form a linear system of 3 equations with 3
unknowns (α1, α2, α3). It has the unique solution

α1 = (λ3 − λ2)(q − λ1)(1 + p − λ1)

(λ2 − λ1)(q − λ3)(1 + p − λ3)
α3, (3.36)

α2 = (λ1 − λ3)(q − λ2)(1 + p − λ2)

(λ2 − λ1)(q − λ3)(1 + p − λ3)
α3, (3.37)

α3 = (1 + p − λ3)(q − λ3)

(λ3 − λ1)(λ3 − λ2)
α. (3.38)

It is possible to find α3 from α and λ3 only. From (3.3) we know that R(λi ) = λ

for i ∈ {1, 2, 3}, which means that

(z − λ1)(z − λ2)(z − λ3) = pqR(z) − λ. (3.39)

By differentiating both sides of (3.39) with respect to z, and then evaluating at
z = λ3, we obtain

(λ3 − λ1)(λ3 − λ2) = pqR′(λ3) = 3λ23 − 6λ3 + 2 + pq. (3.40)
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This allows us to replace the denominator in the RHS of (3.38), which leads to

α3 = (1 + p − λ3)(q − λ3)

3λ23 − 6λ3 + 2 + pq
α. (3.41)

This proves the induction from αn,∗ to αn+1,∗ in the case where the eigenvalue
λ /∈ {0, 2}.

If λ ∈ {0, 2}, then f has two eigenfunction extensions to the next level. The
matching condition stated in (3.31) remains the same, but degenerates to a linear
system of 2 equations with 2 unknowns. We omit the details.

As a simple corollary, we now show that the weights α∗,∗ are all nonnegative in
our convention. Recall that α0,1 = α0,2 = 1

2 . By the structure of the cubic polynomial
R(z) (see Fig. 2), λ1 ∈ [0,min(p, q)], λ2 ∈ [max(p, q),min(1 + p, 1 + q)], and
λ3 ∈ [max(1 + p, 1 + q), 2]. So if α is nonnegative, it is direct to verify using (3.36)
through (3.38) that α1, α2, and α3 are all nonnegative. By induction we deduce that
all weights α∗,∗ are nonnegative. ��

Using the aforementioned result, we now define the “approximate delta functions.”
Based on Lemma 2.5, and the fact that the lowest branch of R−1(z) is increasing, we
can deduce that the lowest |Vn| eigenvalues of �n+1 are determined recursively by

λn+1,k = (The lowest branch of R−1)(λn,k) for 0 ≤ k ≤ 3n . (3.42)

Given the level-n delta function δ
(n)
0 , we define its approximation at level n0 < n

by

δ
(n0,n)
0 (x) :=

3n0∑

k=0

αn0,k fn,k(x) for x ∈ Vn . (3.43)

In other words, we consider a truncated series of the spectral representation at level
n0, fixing the coefficients αn0,k , but taking the eigenfunctions fn,k to level n.

4 Estimates of Eigenvalues and Eigenfunctions

In this section, we use the spectral decimation to derive finer estimates of the eigen-
values and the eigenfunctions, which will be used in Sect. 5. Of particular importance
is the constant C := R′(0) = 2+pq

pq , the renormalization factor for the eigenvalues
{λn,k}n . Its significance derives from the following fact.

Proposition 4.1 For each k ∈ N ∪ {0}, the limit limn→∞[R′(0)]nλn,k exists.

Proof Let ϕ be the lowest branch of R−1, which we regard as a function on C. Via a
power series expansion, we see that ϕ(z) has an attracting fixed point at z = 0, with
ϕ(0) = 0 and ϕ′(0) = [R′(0)]−1 = pq

2+pq < 1. By Koenigs’ theorem (see for example

[46, Sect. 8]), the renormalized iterates {z �→ [ϕ′(0)]−nϕn(z)}n converge uniformly
on compact subsets of a local neighborhood of 0.
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Now given a fixed k, the recurrence relation (3.42) implies that there exists n0 =
n0(k) such that λn+1,k = ϕ(λn,k) for all n ≥ n0. Combine this with the foregoing
result and we conclude that the limit

lim
n→∞ R′(0)nλn,k = [ϕ′(0)]−n0 lim

n→∞[ϕ′(0)]−n+n0ϕn−n0(λn0,k) (4.1)

exists. ��
In what follows we denote λk := limn→∞ Cnλn,k . Our next result gives an upper

and a lower bound on λk .

Theorem 4.2 Fix p ∈ (0, 1
2 ), and let k and n0 be as in the proof of Proposition 4.1.

Then

λn0,k

(

1 + 3(pq)

(2 + pq)2
λn0,k

)

≤ λk

Cn0
≤ λn0,k exp

(

λn0,k
p(2 + q)

2q(2 − p)

)

. (4.2)

Proof As in the previous proof, let ϕ be the lowest branch of R−1. The lower bound
on λk will come from the Taylor approximation to ϕ, while the upper bound will come
from a quadratic function which is at least as large as ϕ.

Lower bound. We compute the Taylor series expansion of ϕ about 0 to 2nd order
in z. It is

a(z) = pq

2 + pq
z + 3(pq)2

(2 + pq)3
z2. (4.3)

This is explained by the fact that the first derivative of the inverse function ϕ(z)
is given by ϕ′ = 1/R′, and its second derivative is given by ϕ′′ = −R′′/(R′)3.
Computing these derivatives at zero gives the quadratic function (4.3).

Furthermore we claim that a(z) < ϕ(z) for all z ∈ (0, 2). It is enough to check that
ϕ′′′(z) > 0. Here we use the identity

d3y

dx3
= −d3x

dy3

(
dy

dx

)4

+ 3

(
d2x

dy2

)2 (
dy

dx

)5

, (4.4)

which in our context reads

ϕ′′′(z) = −R′′′(ϕ(z))[ϕ′(z)]4 + 3[R′′(ϕ(z))]2[ϕ′(z)]5. (4.5)

Since ϕ′(z) > 0, we can factor out [ϕ′(z)]5 from (4.5), and use the identity ϕ′(z) =
[R′(ϕ(z))]−1 so that we reduce the original sign question to checking the sign of

−R′′′(ϕ(z))R′(ϕ(z)) + 3[R′′(ϕ(z))]2 (4.6)

=
(

1

pq

)4 [
−6 · (3[ϕ(z)]2 − 6ϕ(z) + (2 + pq)) + 3(6ϕ(z) − 6)2

]
(4.7)

=
(

1

pq

)4

· 6 · (15[ϕ(z)]2 − 30ϕ(z) + 16 − pq) (4.8)
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=
(

1

pq

)4

· 6 ·
[
15(ϕ(z) − 1)2 + (1 − pq)

]
, (4.9)

which is always positive. This shows that ϕ′′′(z) > 0, and thus a(z) < ϕ(z) for
z ∈ (0, 2). Combined with the fact that the functions z �→ a(z) and z �→ ϕ(z) are
both monotone increasing on [0, 2), this implies that for each n ∈ N, an(z) ≤ ϕn(z)
for z ∈ [0, 2).

Fix k ∈ N ∪ {0} and n0 = n0(k) as in the proof of Proposition 4.1. Put z0 = λn0,k ,
and define the sequence of numbers {zn}n inductively by zn+1 = ϕ(zn). Then, by the
inequalities above, we have

ϕ(zn) ≥ a(zn) = pq

2 + pq
zn + 3(pq)2

(2 + pq)3
z2n (4.10)

= zn

(
pq

2 + pq

)(

1 + 3(pq)

(2 + pq)2
zn

)

(4.11)

≥ a(zn−1)

(
pq

2 + pq

)(

1 + 3(pq)

(2 + pq)2
a(zn−1)

)

. (4.12)

Iterating this process we arrive at the estimate

ϕ(zn) ≥ zn0

(
pq

2 + pq

)n−n0 n∏

j=n0

(

1 + 3(pq)

(2 + pq)2
z j

)

. (4.13)

Noting that 1+ 3(pq)

(2+pq)2
z > 1, we obtain a slightly crude but still efficient estimate

ϕ(zn) ≥ zn0

(
pq

2 + pq

)n−n0 (

1 + 3(pq)

(2 + pq)2
zn0

)

, (4.14)

which is the claimed lower bound in (4.2).
Upper bound. To bound ϕ(z) from above, we construct a quadratic function h(z)

such that h(0) = 0, h(2) = p and h′(0) = ϕ′(0). A simple calculation shows that

h(z) = pqz

2 + pq

(

1 + p(2 + q)

4q
z

)

, (4.15)

and h(z) ≥ ϕ(z) for z ∈ [0, 2]. Using this, along with the fact that zn+1 = ϕ(zn) ≤
pq

2+pq zn
(
1 + p(2+q)

4q zn
)
, and zn+1 ≤ p

2 zn , we get the following estimate:

ϕ(zn) ≤ zn0

(
pq

2 + pq

)n−n0 n∏

j=n0

(

1 + p(2 + q)

4q
z j

)

(4.16)

≤ λn0,k

(
pq

2 + pq

)n−n0 n∏

j=n0

(

1 + p(2 + q)

4q

( p

2

) j−n0
λn0,k

)

. (4.17)



J Fourier Anal Appl

Therefore, using the inequality 1 + x ≤ ex ,

λk = lim
n→∞

(
2 + pq

pq

)n

ϕ(zn) ≤ lim
n→∞

(
2 + pq

pq

)n ( pq

2 + pq

)n−n0
λn0,k

×
n∏

j=n0

(

1 + p(2 + q)

4q

( p

2

) j−n0
λn0,k

)

≤
(
2 + pq

pq

)n0
λn0,k

× exp

(
p(2+q)

4q

1

1− p
2

λn0,k

)

=
(
2 + pq

pq

)n0
λn0,k exp

(
p(2 + q)

2q

1

2 − p
λn0,k

)

.

(4.18)

This gives the claimed upper bound in (4.2). ��

For a function f : Vn → R, we denote its sup norm by ‖ f ‖n,∞ = sup{| f (x)| : x ∈
Vn}. Likewise, the sup norm of h : I → R is denoted by ‖h‖∞ = sup{|h(x)| : x ∈ I }.
Our next result is an estimate on the sup norms of the eigenfunctions of �n .

Lemma 4.3 Fix p ∈ (0, 1
2 ). Let fn,k be the eigenfunction corresponding to the (k +

1)th lowest eigenvalue λn,k of �n. Then for every m > n ≥ n0,

‖ fm,k‖m,∞ ≤ ‖ fn,k‖n,∞
m∏

j=n+1

(

1 +
( p

2

) j−n λn,k

q − λn+1,k

)

. (4.19)

In particular, if fk = limi→∞ fn0+i,k per Theorem 3.3, then

‖ fk‖∞ ≤ ‖ fn,k‖n,∞ exp

(
λn,k

q − λn+1,k

p

2 − p

)

. (4.20)

Proof Let us introduce the function

F(A, B, z) = q(1 − z)A + pqB

(q − z)(1 + p − z)
, (4.21)

which is derived from the eigenfunction extension algorithm (3.1) and (3.2). Note that
z ∈ [0, p) because the extension uses the lowest branch of R−1 starting from level n0.
First we would like to control the linear growth of z �→ F(A, B, z) − F(A, B, 0):

|F(A, B, z) − F(A, B, 0)|
≤ |A|

∣
∣
∣
∣

q(1 − z)

(q − z)(1 + p − z)
− q

1 − p2

∣
∣
∣
∣

+ |B|
∣
∣
∣
∣

pq

(q − z)(1 + p − z)
− pq

1 − p2

∣
∣
∣
∣
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≤ max(|A|, |B|)q
(∣
∣
∣
∣
(1 − z)(1 − p2) − 1 + 2z + p2 − z2

(q − z)(1 + p − z)(1 − p2)

∣
∣
∣
∣

+p

∣
∣
∣
∣

2z − z2

(q − z)(1 + p − z)(1 − p2)

∣
∣
∣
∣

)

= max(|A|, |B|)q|z|
(∣
∣
∣
∣

1 + p2 − z

(q − z)(1 + p − z)(1 − p2)

∣
∣
∣
∣

+p

∣
∣
∣
∣

2 − z

(q − z)(1 + p − z)(1 − p2)

∣
∣
∣
∣

)

. (4.22)

Since 0 < z < p < 1
2 , the absolute value terms in the RHS of (4.22) are positive,

so we can drop the absolute value signs and add the two terms in the bracket to get

|F(A, B, z) − F(A, B, 0)|

≤max(|A|, |B|)q|z|
(

1 + 2p + p2 − z − pz

(q − z)(1 + p − z)(1 − p2)

)

=max(|A|, |B|)q|z|(1 + p)

(
1 + p − z

(q − z)(1 + p − z)(1 − p2)

)

=max(|A|, |B|) |z|
(q − z)

, (4.23)

which implies that

|F(A, B, z)| ≤ max(|A|, |B|)|z| 1

(q − z)
+ |F(A, B, 0)|. (4.24)

We use (4.24) to estimate the sup norms of the eigenfunctions: for all n ≥ n0,

‖ fn+1,k‖n+1,∞ ≤ ‖ fn,k‖n,∞|F(1, 1, zn+1)|
≤ ‖ fn,k‖n,∞

( |zn+1|
q − zn+1

+ |F(1, 1, 0)|
)

≤ ‖ fn,k‖n,∞
(

zn+1

q − zn+1
+ 1

)

, (4.25)

Iterating the inequality (4.25) and using the fact that zn+m ≤ ( p2
)m

zn (3.14) gives

‖ fm,k‖m,∞ ≤ ‖ fn,k‖n,∞
m∏

j=n+1

(

1 + z j
q − z j

)

≤ ‖ fn,k‖n,∞
m∏

j=n+1

(

1 +
( p

2

) j−n zn
q − zn+1

)

= ‖ fn,k‖n,∞
m∏

j=n+1

(

1 +
( p

2

) j−n λn,k

q − λn+1,k

)

(4.26)
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for all m > n ≥ n0. This shows (4.19).
Next, using the triangle inequality and taking the supremum, we have

∣
∣
∣
∣sup
x∈I

| fk(x)| − sup
x∈I

| fm,k(x)|
∣
∣
∣
∣ ≤ sup

x∈I
| fk(x) − fm,k(x)|. (4.27)

Recall from Theorem 3.3 that the limit limi→∞ fn0+i,k is uniform on I . This along
with the bound (4.27) implies that

‖ fk‖∞ = lim
m→∞ ‖ fm,k‖m,∞ (4.28)

So by taking the limit m → ∞ on both sides of (4.3), we arrive at the estimate

‖ fk‖∞ ≤ ‖ fn,k‖n,∞ lim
m→∞

m∏

j=n+1

(

1 +
( p

2

) j−n λn,k

q − λn+1,k

)

≤ ‖ fn,k‖n,∞ exp

⎛

⎝
∞∑

j=n+1

( p

2

) j−n λn,k

q − λn+1,k

⎞

⎠

= ‖ fn,k‖n,∞ exp

(
λn,k

q − λn+1,k

p

2 − p

)

, (4.29)

where in the second line we used the inequality 1 + x ≤ ex . This proves (4.20). ��
The following result provides a quantitative estimate of the convergence of fn,k to

fk in sup norm. As in the previous section, we harmonically extend fn,k from Vn to
I , and abuse notation by calling the extension fn,k still. Then �μ fn,k(x) = 0 for all
x ∈ I \ Vn .

Theorem 4.4 Fix p ∈ (0, 1
2 ). Then

‖ fk − fn,k‖∞ ≤ C−nλk‖ fn,k‖n,∞ ‖g‖∞ exp

(
λn,k

q − λn+1,k

p

2 − p

)

, (4.30)

where g : I × I → R+ is the Green’s function associated with �μ, and

‖g‖∞ := sup
(x,y)∈I×I

g(x, y). (4.31)

Proof Since fk and fn,k agree on Vn , it is enough to estimate their difference on
I \ Vn . Based on the construction described in Sect. 2, I \ Vn is the disjoint union
of {Fw{(0, 1)} : |w| = n}, where w = w1w2 · · · wn is a word of length n with
wi ∈ {1, 2, 3} for 1 ≤ i ≤ n, and Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwn . So our task is to
show that for every word w of length n, the function |( fk − fn,k) ◦ Fw| on (0, 1) has
a uniform upper bound.

Our strategy is to exploit the self-similarity of the fractal Laplacian�μ (Proposition
2.4), as well as properties of the corresponding Green’s function.We remind the reader
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that Gμ = �−1
μ is the Green’s operator associated to �μ. It admits an integral kernel

g(·, ·) called the Green’s function, defined by

(Gμu)(y) =
∫

I
g(y, y′)u(y′) dμ(y′). (4.32)

The existence of Gμ and g follows from the theory of Kigami [37, Sects. 3.5–3.6].
In particular, Gμ : L1(I, μ) → C(I ), and g is a nonnegative continuous function on
I × I .

To begin the proof, we start with the self-similarity of �μ (Proposition 2.4):

�μ(( fk − fn,k) ◦ Fw) = C−|w|�μ( fk − fn,k) ◦ Fw on I. (4.33)

Since fn,k is harmonic with respect to�μ on Fw{(0, 1)} for every wordw of length
n, it follows that

�μ( fk − fn,k) ◦ Fw = �μ fk ◦ Fw = λk fk ◦ Fw on (0, 1). (4.34)

Combine (4.33) and (4.34) and we get

�μ(( fk − fn,k) ◦ Fw) = C−nλk fk ◦ Fw on (0, 1). (4.35)

Now apply the Green’s operator Gμ on both sides of (4.35) to get

( fk − fn,k) ◦ Fw = C−nλkGμ( fk ◦ Fw) on (0, 1). (4.36)

Using the representation (4.32) we obtain the estimate

|( fk − fn,k) ◦ Fw| ≤ C−nλk‖Gμ( fk ◦ Fw)‖∞
≤ C−nλk‖g‖∞‖( fk ◦ Fw)‖∞
≤ C−nλk‖g‖∞‖ fk‖∞ on (0, 1). (4.37)

This proves that
‖ fk − fn,k‖∞ ≤ C−n

0 λk‖g‖∞‖ fk‖∞. (4.38)

In order to turn the RHS of (4.38) into a more useful estimate, we use (4.20) to

replace ‖ fk‖∞ by ‖ fn,k‖n,∞ exp
(

λn,k
q−λn+1,k

p
2−p

)
, which yields (4.30). ��

5 Estimates on the Solution of the Wave Equation

We now apply the results of Sects. 3 and 4 to estimate the solution of the wave equation
on the interval I endowed with the fractal measure μ.
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Numerically, we can only compute the eigensolutions of the fractal Laplacian up
to a finite level, so in practice we solve the “approximate” wave equation

⎧
⎨

⎩

∂t t un = −�nun on Vn × [0, T ],
un(·, 0) = δ

(n0,n)
0 on Vn,

∂t un(·, 0) = 0 on Vn,
(5.1)

where δ
(n,n0)
0 =

3n0∑

k=0

αk fn,k is the approximate δ-function built up from the first |Vn0 | =
(3n0 + 1) eigenfunctions of �n (with �n fn,k = λn,k fn,k), and αk := αn0,k ≥ 0 are
the coefficients found in Sect. 3.3. Throughout the section n0 will be fixed, and we
will not mention n0 explicitly unless the context demands it.

Following the exact same argument, the solution to (5.1) has the series representa-
tion

un(x, t) =
3n0∑

k=0

αk fn,k(x) cos
(
t
√

λn,k

)
for all x ∈ Vn and t ∈ [0, T ]. (5.2)

For each t , we harmonically extend the function x �→ un(x, t) from Vn to I . This
procedure allows us to compare un(x, t) with

ũ(x, t) =
3n0∑

k=0

αk fk(x) cos
(
t
√

λk

)
for all x ∈ I and t ∈ [0, T ], (5.3)

the solution of the wave equation on (I, μ) whose initial condition is the truncated
series representation of the δ-impulse. We note that ũ is differentiable in t and con-
tinuous in x because the eigenfunctions functions fk are continuous. However it is
highly localized function at t = 0, and therefore it mimics wave propagation from a
delta function initial values.

5.1 Convergence of Approximate Solutions of Wave Equation

In this subsection we establish an upper bound on

∣
∣
∣
∣
∣
un

(

x,
tπ
√

λn,1

)

− ũ

(

x,
tπ√
λ1

)∣∣
∣
∣
∣

(5.4)

for all n and t , uniform in x . This would then give us the convergence of un to ũ
at fixed t and uniformly in x . Note that we are normalizing t in such a way that the
orthogonal projection of the wave onto the lowest eigenfunction (corresponding to
eigenvalue λ∗,0) propagates at speed 1.
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Theorem 5.1 Fix p ∈ (0, 1
2 ). Let un and ũ be respectively defined as in (5.2) and

(5.3). Then there exists a positive constant C = C(n0, p) such that for each t ∈ [0, T ]
and n > n0,

sup
x∈I

∣
∣
∣
∣
∣
un

(

x,
tπ
√

λn,1

)

− ũ

(

x,
tπ√
λ1

)∣∣
∣
∣
∣
≤ C (t ∨ 1) C−n . (5.5)

Proof Using the series representations (5.2) and (5.3) and the triangle inequality, we
find that (5.4) is bounded from above by

3n0∑

k=0

αk

∣
∣
∣
∣
∣
fn,k(x) cos

(

tπ

√
λn,k

√
λn,1

)

− fk(x) cos

(

tπ

√
λk√
λ1

)∣∣
∣
∣
∣
, (5.6)

which, by a simplemanipulation using the sum-to-product trigonometric rules, is equal
to

3n0∑

k=0

αk

∣
∣
∣[ fn,k(x) − fk(x)] cos

(
tπ�+

n,k

)
cos
(
tπ�−

n,k

)

−[ fn,k(x) + fk(x)] sin
(
tπ�+

n,k

)
sin
(
tπ�−

n,k

)∣
∣
∣ , (5.7)

where�±
n,k := 1

2

(√
λn,k
λn,1

±
√

λk
λ1

)
. Using again the triangle inequality, we can estimate

(5.7) from above by I1 + I2, where

I1 :=
3n0∑

k=0

αk
∣
∣ fn,k(x) − fk(x)

∣
∣ ·
∣
∣
∣cos

(
tπ�+

n,k

)∣
∣
∣

∣
∣
∣cos

(
tπ�−

n,k

)∣
∣
∣ , (5.8)

I2 :=
3n0∑

k=0

αk
∣
∣ fn,k(x) + fk(x)

∣
∣ ·
∣
∣
∣sin

(
tπ�+

n,k

)∣
∣
∣

∣
∣
∣sin

(
tπ�−

n,k

)∣
∣
∣ . (5.9)

The key term to control in I1 is | fn,k(x)− fk(x)|, while in I2 it is
∣
∣
∣sin

(
tπ�−

n,k

)∣
∣
∣. For

the former we invoke Theorem 4.4, while for the latter we apply the Taylor expansion

∣
∣
∣sin

(
tπ�−

n,k

)∣
∣
∣ ≤ tπ

∣
∣
∣�

−
n,k

∣
∣
∣+ O

(
(t�−

n,k)
3
)

. (5.10)

For termsother than these two,weapply the simpleminded estimates
∣
∣
∣cos

(
tπ�±

n,k

)∣
∣
∣

≤ 1,
∣
∣
∣sin

(
tπ�+

n,k

)∣
∣
∣ ≤ 1, and

∣
∣ fn,k(x) + fk(x)

∣
∣ ≤ 2| fn,k(x)| + ‖ fn,k − fk‖∞
≤ 2‖ fn,k‖∞ + O

(
C−n) . (5.11)
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Fig. 4 The first 25 eigenfunctions of the fractal Laplacian with p = 1
5

Fig. 5 The first 25 eigenfunctions of the fractal Laplacian with p = 4
5

First let us estimate �−
n,k , which amounts to controlling the ratio λn,k

λn,1
. By Theorem

4.2, (
1 + 3pq

(2+pq)2
λn,1

)

exp
(
λn,k

p(2+q)
2q(2−p)

) ≤ λn,k

λn,1
· λ1

λk
≤

exp
(
λn,1

p(2+q)
2q(2−p)

)

(
1 + 3pq

(2+pq)2
λn,k

) . (5.12)

We note that in this case we have 0 � k � 3n0 < n and so Theorem 4.2 is
applicable.
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Fig. 6 Fourier approximations for delta function, p = 1
5 . Left to right n0 = 2, 3, 4
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Fig. 7 Fourier approximations for delta function, p = 4
5 . Left to right n0 = 2, 3, 4

x0 x x1y0 y1

abqp pq

Fig. 8 A diagram of two adjacent (n + 1)-cells used in the proof of Theorem 3.1

Fig. 9 A graph of y(x) = ∑3n0
k=0 αk | fn,k (x)| and in order: uniform spacing of points, uniform resistance

between points, and uniform measure

In what follows we denote D := p(2+q)
2q(2−p) and D1 := 3pq

(2+pq)2
. Observe from the

discussion in the proof of Theorem 4.2 that D > D1 whenever p ∈ (0, 1].
From Proposition 4.1, we know that for each fixed k, λn,k = O(C−n) as n → ∞.

Thus upon expanding the LHS and the RHS of (5.12) up to the O(C−n) terms, we get

1 + 1

2

(
D1λn,1 − Dλn,k

)+ o(C−n) ≤
√

λn,k

λn,1
· λ1

λk

≤ 1 + 1

2

(Dλn,1 − D1λn,k
)+ o(C−n). (5.13)
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Fig. 10 Uniform spacing of points at time t = 0.4. From left to right p = 0.1, 0.2, 0.3, 0.4

It then follows that

1

4

(
D1λn,1 − Dλn,k

)+ o(C−n) ≤ �−
n,k ·

√
λ1

λk
≤ 1

4

(Dλn,1 − D1λn,k
)+ o(C−n).

(5.14)

Plugging this into (5.10) yields

∣
∣
∣sin

(
tπ�−

n,k

)∣
∣
∣ ≤ tπ

4

√
λk

λ1
max

(∣
∣Dλn,1 − D1λn,k

∣
∣ ,
∣
∣Dλn,k − D1λn,1

∣
∣
)+ o

(
tC−n)

= tπ

4

√
λk

λ1

∣
∣Dλn,k − D1λn,1

∣
∣+ o

(
tC−n) . (5.15)
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Fig. 11 Uniform spacing of points at time t = 0.1. From left to right p = 0.1, 0.2, 0.3, 0.4

Putting all the estimates into (5.8) and (5.9) gives

I1 ≤ C−n‖g‖∞
3n0∑

k=0

αkλk‖ fn,k‖n,∞ exp

(
λn,k

q − λn+1,k

2

2 − p

)

+ o
(
C−n) .

I2 ≤ tπ

2

3n0∑

k=0

αk‖ fn,k‖∞

√
λk

λ1

∣
∣Dλn,k − D1λn,1

∣
∣+ o(tC−n). (5.16)

This means that (5.4) is bounded above by

3n0∑

k=0

αk‖ fn,k‖∞
[

λkC
−n‖g‖∞ exp

(
λn,k

q − λn+1,k

2

2 − p

)

+ tπ

2

√
λk

λ1

∣
∣Dλn,k − D1λn,1

∣
∣

]

+ o
(
(t ∨ 1) C−n) . (5.17)
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Fig. 12 Uniform spacing of points and, from left to right time t = 0.1, 0.2, 0.3, 0.4. with p = 0.1

Fig. 13 Time t = 0.4 and p = 0.1 and from left to right uniform spacing of points, uniform resistance
between points, and uniform measure

It remains to explain how (5.5) follows from (5.17). For 0 ≤ k ≤ 3n0 , λk ≤ λ3n0 .
Also by Proposition 4.1, there exists a positive constant C independent of n such that

|Dλn,k − D1λn,1| ≤ CC−n|Dλk − D1λ1|. (5.18)

By an argument of Kigami [37], the Green’s function corresponding to�μ on I can
be constructed independently of the measure μ, whence independently of the value
p. In particular when p = 1

2 , we recover the classical Green’s function on I with
Lebesgue measure, g(x, y) = (x ∧ y)((1 − x) ∧ (1 − y)). Thus ‖g‖∞ = 1

4 .
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Fig. 14 Eigenfunction 53, with p = 0.1 and in order: uniform spacing of points, uniform resistance
between points, and uniform measure

For the exponential in the first term, note that since p ∈ (0, 1
2 ),

λn,k

q − λn+1,k

2

2 − p
<

λn,k
1
2 − λn+1,k

2

2 − 1
2

= 4

3

λn,k
1
2 − λn+1,k

. (5.19)

By Proposition 4.1, the RHS of (5.19) is O(C−n) as n → ∞. Thus the exponential
is exp(O(C−n)) = 1 + O(C−n).

Finally, we claim that there exists a constant C such that

3n0∑

k=0

αk‖ fn,k‖∞ ≤ C

for all n > n0. To explain this, note that
∑3n0

k=0 αk = 1, by virtue of our choice of
the initial eigenfunctions ( f0,1 and f0,2) and initial weights α0,1 = α0,2 = 1

2 , and the
matching condition (3.33). Then the rest of the proof follows from Sect. 8 of Rogers’
paper [51]. Numerically, C is slightly above 1, see Fig. 9. ��

6 Numerical Computation of Eigenfunctions and Solutions of the Wave
Equation

We present some of the numerical results obtained by our spectral decimation method.
The spectral decimation is an iterative method, and the code repeats the calculation
done in Sect. 3. This code, which is used to produce pictures and to perform the
experiments, and a graphical user interface to recreate the results can be found at http://
homepages.uconn.edu/fractals/fractalwave/. Here we give a representative variety of
figures detailing some of the numerical calculations that have been performed. Figures
4, and 5 show the first 25 eigenfunctions, and, in particular, the ways in which the
symmetry is broken for values of p and 1 − p. Figures 6, and 7 show the quality of
the approximation for the delta function for various values of n0. In particular one can
see that for small values of p (in our case p = .2) the approximation is significantly
better than for the corresponding values of 1 − p (in our case q = .8). This shows
why our efforts focused on the cases where p < .5 (Figs. 8, 9). The next set of Figs.
10, 11, 12, and 13 heuristically suggest that the visible portion of the wave propagates

http://homepages.uconn.edu/fractals/fractalwave/
http://homepages.uconn.edu/fractals/fractalwave/
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at a speed proportional to t
ds
2 . But, further investigation will be needed to show this

more precisely. Figure 14 shows three different parametrizations of a representative
eigenfunction.
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