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Abstract
We show how to calculate the spectrum of the Laplacian operator on fully symmetric, finitely
ramified fractals. We consider well-known examples, such as the unit interval and the Sierpiński
gasket, and much more complicated ones, such as the hexagasket and a non-post critically
finite self-similar fractal. We emphasize the low computational demands of our method. As a
conclusion, we give exact formulas for the limiting distribution of eigenvalues (the integrated
density of states), which is a purely atomic measure (except in the classical case of the interval),
with atoms accumulating to the Julia set of a rational function. This paper is the continuation
of the work published by the same authors in Ref. 1.

Keywords : Eigenvalues and Eigenfunctions on Fractals; Self-Similar Laplacians; Spectral
Decimation.

1. INTRODUCTION

In a previous paper1 we gave a theoretical justifi-
cation for a method by which the spectrum of the
Laplacian operator on fully symmetric, finitely ram-
ified fractals can be computed. The advantage of
this method is that the computational demands are
low. The purpose of this paper is to provide detailed

explanations and examples of how this method can
be applied to a range of fractals.

For the background on the analysis on frac-
tals, one can consult the recent textbook,2 with
more advanced topics covered in monographs.3–5

Among many applications of fractal structures we
particularly note Refs. 6 and 7. The recent survey8
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describes relation between analysis on fractals and
self-similar groups.

The first self-similar set that we examine is the
unit intervala (Sec. 4). The purpose of this example
is to show that when the finitely ramified fractal
is also a set that is amenable to classical analysis,
the spectrum that we obtain is the same as the one
obtained from the classical analysis. Next we exam-
ine the Sierpiński gasket (Sec. 5) as one of the sim-
plest and best known fractals that does not admit
a classical analysis of the Laplacian. From here we
go on to analyze the Hexagasket (Sec. 6) which is
a more complicated and to a novice less familiar
fractal than the Sierpiński gasket, yet it is still very
similar to the Sierpiński gasket. Lastly we analyze
a fractal that is not post-critically finite (Sec. 7)
to show how the process works in a more general
setting.

Before continuing, we shall take a moment to
describe what exactly it is that is vibrating. The
physical intuition for these calculations is based on
a thin piece of material placed horizontally that is
struck and begins to vibrate vertically. One may
think of a horizontal fractal membrane or plate
which, when vibrating, moves up and down in
the vertical direction. It is well known that the
pure vibration modes correspond to the eigenmodes
of the Laplacian. In particular, the frequency of
the vibration corresponds to the eigenvalue, and
the shape or amplitude corresponds to the eigen-
function. In the classical one-dimensional case of

a string, meaning a unit interval in our termi-
nology, the pure vibration modes are given by
familiar sine curves. Figure 1 shows an example
of an eigenfunction on the Sierpiński gasket with
vastly exaggerated amplitude. Figures 2 and 3 show
eigenfunctions on the level 3 Sierpiński gasket.
These figures makes use of Neumann boundary con-
ditions as do the basic calculations. For us the Neu-
mann boundary conditions simply imply a reflecting
boundary so that no energy is lost from the vibrat-
ing fractal, but do not impose any restrictions on
how our fractal may vibrate. The case when the
boundary points are fixed in space corresponds to
Dirichlet, or zero, boundary conditions. In this case
the calculations are very similar and so we omit
them. Among many related computations of eigen-
modes on fractals and in the domains with fractal
boundary, we particularly note, Refs. 10–12 which
also contain many references.

2. FRACTAL BASICS

The type of fractal that we consider in this paper
consists of a compact subset of R

2 which is the
fixed set of a family of injective mappings. Note
that there is nothing special about two-dimensional
Euclidean space, just that it makes the pictures eas-
ier to draw. Denote the fractal as F and the set of
injective mappings as {φi}n

i=1. Then the fractal is
the unique compact subset such that F =

⋃n
i=1 φiF ,

that is, the fractal is the fixed point of the set of

Fig. 1 A basic Neumann eigenfunction on the Sierpiński gasket, three-dimensional views.

aThe unit interval admits a decomposition into smaller intervals, and so is the attractor of an iterated function system, but
perhaps the interval cannot be called a fractal, according to the terminology introduced by Mandelbrot in Ref. 9. The term
“fractal” is usually reserved for geometric objects not having simpler Euclidean descriptions. Rather than calling the unit
interval a fractal, we call it a Euclidean set admitting a self-similar decomposition.
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Fig. 2 A basic Neumann eigenfunction on the level 3 Sierpiński gasket, three-dimensional views.

Fig. 3 A Neumann eigenfunction on the level 3 Sierpiński gasket, three-dimensional views.

mappings. We require that φiF∩φjF is, when i �= j,
at most a single point and quite possibly empty. The
set of points which are fixed under one of the injec-
tions is called the boundary set, that is x = φix for
some i.

We choose to approximate these fractals by a
sequence of finite graphs whose limit is the full frac-
tal. The vertices of the depth n approximation are
the images of the boundary points under n of the
injections. So if {zj}m

j=1 is our boundary set then
the vertices for the depth 3 approximation of F are
φi3 ◦ φi2 ◦ φi1(zj) for all choices of ik ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . ,m}. Two vertices are connected
by an edge if they are images of different bound-
ary points under the same sequence of n injections.
For example, if we look at the boundary points and
the depth 0 graph, we get the complete graph with
those vertices. If we look at the depth 1 graph we
get the vertices φi(zj) where we place edges between
the vertices {φi(zj)}m

j=1 and do this for each i. The

most intuitive example of this is Fig. 6. We denote
the set of vertices for the depth n graph Vn which
we also use for the graph itself. Once we have this
graph approximation we can consider the proba-
bilistic Laplacian on Vn, whose matrix we give the
name Mn.

We write σ(M) for the spectrum of the matrix
M which, since the matrices are finite-dimensional,
is just the set of eigenvalues. If z ∈ σ(Mn) then we
write multnz for the multiplicity of z as an eigen-
value of Mn. We will spend a great deal of time
considering multnz as n increases to infinity in later
sections.

3. EIGENFUNCTION
EXTENSION

The theoretical underpinnings of our procedure are
a collection of results of an entirely algebraic fla-
vor that relate the eigenvalues of a given matrix
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to the eigenvalues of a submatrix. The relation is
described through two rational functions and in all
of our examples the submatrix that we look at is the
identity matrix which is the reason we have such low
computational demands.

The Laplacian matrix that we start with is the
depth 1 Laplacian matrix, M1 = M . It is writ-
ten as a square matrix with ones on the diagonal.
Off-diagonal entries are determined by aij = −1

deg(xi)

where xi is a vertex in V1 if xi and xj are joined by
an edge and aij = 0 when xi and xj are not joined
by an edge. These matrices have the nice property
that when summing across a row the sum is always
zero. We define A to be the square block in the
upper left hand corner that has as many rows and
columns as there are boundary points in the frac-
tal. This matrix is always just a copy of the identity
matrix. To begin the iterative process of extending
eigenvalues from one Laplacian to a deeper one we
have to do the base case first, of extending the eigen-
values of M0 to those of M . We begin by writing M
is block form:

M =
[
A B
C D

]
.

We consider the Schur complement of M − zI
which is

S(z) = (A − zI) − B(D − z)−1C.

In Ref. 1 we showed, using ideas from Refs. 13 and
14, that

S(z) = φ(z)(M0 − R(z)).

Where φ(z) and R(z) are scalar valued rational
functions, providing that z �∈ σ(D). If we let N0 be
the number of boundary points then M0 has entries
aii = 1 and aij = −1

N0−1 . We can look at specific
entries in this matrix valued equation to get the
following two scalar valued equations:

φ(z) = −(N0 − 1)S1,2(z)

and

R(z) = 1 − S1,1(z)
φ(z)

.

Already we can see two types of z which would cause
problems for us, either z ∈ σ(D) or φ(z) = 0, we
collectively call these points exceptional and the set
of them E(M,M0), the exceptional set.

Let us dispose of non-exceptional values of z first:

Theorem 3.1. Suppose that z is not an eigenvalue
of D, and not a zero of φ. Then z is an eigenvalue
of M with eigenvector v if and only if R(z) is an
eigenvalue of M0 with eigenvector v0, and v =

hv0

v′
i

where

v′ = −(D − zI)−1Cv0.

This implies that there is a one-to-one map from
the eigenspace of M0 corresponding to R(z) onto
the eigenspace of M corresponding to z.

Theorem 3.1, in particular, defines the eigenfunc-
tion extension map v′ �→ −(D − zI)−1Cv0. Using
this map iteratively one can compute eigenfunc-
tions with very high accuracy and efficiency. The
programs implementing this hierarchical iterative
procedure do not involve large matrix calculations,b

and the results are illustrated in Figs. 1 to 3. The
first numerical calculations on the Sierpiński gasket
were done in Ref. 10, with more topics considered
in Refs. 2, 12 and references therein. The level 3
Sierpiński gasket was studied in Refs. 1, 2, 4, 15
and other works.

Theorem 3.1 is proved in Ref. 1. It leaves the
exceptional values to be dealt with, which are
addressed in the next proposition. In this propo-
sition multD(z) is the multiplicity of z as an eigen-
value of D, a similar usage to that of multn. Here
and throughout dimn is the dimension of the func-
tion space on Vn since Vn is a finite collection of
points the space of functions on Vn is just the num-
ber of points in Vn.

Proposition 3.1. 1. If z /∈ E(M0,M), then

multn(z) = multn−1(R(z)), (1)

and every corresponding eigenfunction at depth
n is an extension of an eigenfunction at depth
n − 1.

2. If z /∈ σ(D), φ(z) = 0 and R(z) has a removable
singularity at z, then

multn(z) = dimn−1, (2)

and every corresponding eigenfunction at depth
n is localized.

3. If z ∈ σ(D), both φ(z) and φ(z)R(z) have poles
at z, R(z) has a removable singularity at z, and

bhttp://www.math.uconn.edu/˜teplyaev/fractals/.
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d
dz R(z) �= 0, then

multn(z) = mn−1multD(z) − dimn−1

+multn−1(R(z)), (3)

and every corresponding eigenfunction at depth
n vanishes on Vn−1.

4. If z ∈ σ(D), but φ(z) and φ(z)R(z) do not have
poles at z, and φ(z) �= 0, then

multn(z) = mn−1multD(z) + multn−1(R(z)).
(4)

In this case mn−1multD(z) linearly independent
eigenfunctions are localized, and multn−1(R(z))
more linearly independent eigenfunctions are
extensions of corresponding eigenfunction at
depth n − 1.

5. If z ∈ σ(D), but φ(z) and φ(z)R(z) do not have
poles at z, and φ(z) = 0, then

multn(z) = mn−1multD(z) + multn−1(R(z))

+ dimn−1 (5)

provided R(z) has a removable singularity at z.
In this case there are mn−1multD(z) + dimn−1

localized and multn−1(R(z)) non-localized corre-
sponding eigenfunctions at depth n.

6. If z ∈ σ(D), both φ(z) and φ(z)R(z) have poles
at z, R(z) has a removable singularity at z, and
d
dz R(z) = 0, then

multn(z) = multn−1(R(z)), (6)

provided there are no corresponding eigenfunc-
tions at depth n that vanish on Vn−1. In general
we have

multn(z) = mn−1multD(z) − dimn−1

+ 2multn−1(R(z)). (7)

7. If z /∈ σ(D), φ(z) = 0 and R(z) has a pole z,
then multn(z) = 0 and z is not an eigenvalue.

8. If z ∈ σ(D), but φ(z) and φ(z)R(z) do not have
poles at z, φ(z) = 0, and R(z) has a pole z, then

multn(z) = mn−1multD(z) (8)

and every corresponding eigenfunction at depth
n vanishes on Vn−1.

The proof of this proposition can be found in
Ref. 1 and in a large part depends on the Schur
complement formula and taking inverses of matri-
ces in block form. This proposition does the heavy
lifting for us as we recursively extend eigenval-
ues from the V1 approximation to the full fractal
F . We are finally at a point where we can fully

write down the description of our method:

1. Identify the self-similar structure of a finitely
ramified fractal, create the V1 and V2 approxi-
mations to the fractal. Note how many cells the
fractal is thought of as having (when we con-
sider the unit interval we actually do so three
times with different numbers of cells). Write the
matrix of the Laplacian.

2. Identify M0, D, and find their eigenvectors. Cal-
culate R(z) and φ(z). List σ(M0) as the level
zero eigenvalues. List σ(D) and the poles of φ(z)
as E(M0,M), the exceptional values.

3. Do the inductive calculations using Proposi-
tion 3.1 to find the multiplicities of the eigen-
values for any Vn approximation of the fractal,
and finally take the limiting distribution of those
multiplicities.

The choice of examples in this paper show off
to full advantage the utility of this process. The
example of the one-dimensional interval shows that
the number of cells we see the fractal as having is
non-canonical and that the method adapts to this,
and also it reinforces that classically known results
about Laplacians on Euclidean spaces are compat-
ible with our results. The Sierpiński gasket exam-
ple shows how our method works in a non-trivial
fractal that many readers are already familiar with.
Then on to the Hexagasket which has a construction
very similar to the Sierpiński gasket to reinforce the
methods before going onto the non-p.c.f. fractal in
the final example. The most salient detail about this
fractal is that the vertices have unbounded degree
as we consider higher and higher level approxima-
tions to the fractal.

4. ONE-DIMENSIONAL INTERVAL
AS A SELF-SIMILAR SET

In this section we show how our results allow us
to recover classically known information about the
spectrum of the discrete Laplacians that approxi-
mate the usual one-dimensional continuous Lapla-
cian. The unit interval [0, 1] can be represented as
a self-similar set in various ways. Here we consider
three cases: when it subdivided into two, three or
four subintervals of equal length. In our notation
this means that m is 2, 3, or 4. The depth 1 net-
works for these cases are shown in Fig. 4. The first
two cases were also discussed in Ref. 16. Note that
in each case the function R(z) is the same as the
Chebyshev polynomial of degree m for the interval
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Fig. 4 V1 networks for the interval in cases m = 2, 3, 4,
respectively.

[0, 2], which is the smallest interval that contains the
spectrum of the matrices Mn. It is shown in Ref. 16,
in particular, that the iterations of these polynomi-
als are related in a natural way with the Riemann
zeta function. The proof that R(z) is given by the
Chebyshev polynomials can be found in Ref. 17.

Case m = 2. The matrix of the depth 1 Laplacian
M1 = M is

M =




1 0 −1
0 1 −1

−1
2 −1

2 1




and the eigenfunction extension map is

(D − z)−1C =
(

1
2(z − 1)

1
2(z − 1)

)
.

Moreover, we compute that

φ(z) =
1

2(1 − z)

and

R(z) = 2z(2 − z).

The only eigenvalue of D is σ(D) = {1}. One can
also compute σ(M) = {2, 1, 0} with the correspond-
ing eigenvectors {{−1,−1, 1}, {−1, 1, 0}, {1, 1, 1}}.
It is easy to see that φ(z) �= 0. Thus, the excep-
tional set is

E(M0,M) = {1}.
To begin the analysis of the exceptional value,

note that R(z) does not have any poles (Fig. 5).
We are interested in the value of R(z) at the excep-
tional point, which is R(1) = 2. It is easy to
see that 1 is a pole of φ(z), R(z) has a remov-
able singularity at 1, and d

dz R(1) = 0. So for all
n we can use Proposition 3.1(6) to compute its
multiplicity

multn(1) = 1.

Case m = 3. The matrix of the depth 1 Laplacian
M1 = M is

M =




1 0 −1 0
0 1 0 −1

−1
2 0 1 −1

2

0 −1
2 −1

2 1




and the eigenfunction extension map is

(D − z)−1C =


 2(z−1)

3−8z+4z2
1

8z−4z2−3

1
8z−4z2−3

2(z−1)
3−8z+4z2


 .

Moreover, we compute that

φ(z) =
1

4
(
z − 3

2

) (
z − 1

2

)
and

R(z) = z(3 − 2z)2.
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Fig. 5 The graph of R(z) for F = [0, 1] with m = 2, m = 3 and m = 4, respectively.

Fr
ac

ta
ls

 2
00

8.
16

:2
43

-2
58

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
O

R
N

E
L

L
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/1
7/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 30, 2008 19:1 00401

Vibration Spectra of Finitely Ramified, Symmetric Fractals 249

The eigenvalues of D, written with multiplicities,
are

σ(D) =
{

3
2
,
1
2

}
with corresponding eigenvectors {{−1, 1}, {1, 1}}.
One can also compute

σ(M) =
{

2,
3
2
,
1
2
, 0
}

with the corresponding eigenvectors {{1,−1,−1, 1},
{−2,−2, 1, 1}, {−2, 2,−1, 1}, {1, 1, 1, 1}}. It is easy
to see that φ(z) �= 0. Thus, the exceptional set is

E(M0,M) =
{

3
2
,
1
2

}
.

Again, note that R(z) does not have any poles. We
are interested in the values of R(z) at the excep-
tional points, which are

R

(
3
2

)
= 0, R

(
1
2

)
= 2.

Since d
dz R(z) = 0 at these points, we can use Propo-

sition 3.1(6) to obtain

multn

(
3
2

)
= multn

(
1
2

)
= 1

for all n.

Case m = 4. The matrix of the depth 1 Laplacian
M1 = M is

M =




1 0 −1 0 0
0 1 0 0 −1

−1
2 0 1 −1

2 0

0 0 −1
2 1 −1

2

0 −1
2 0 −1

2 1




and the eigenfunction extension map is

(D−z)−1C =




3−8z+4z2

4(−1+5z−6z2+2z3)
1

4(−1+5z−6z2+2z3)

− 1
2−8z+4z2 − 1

2−8z+4z2

1
4(−1+5z−6z2+2z3)

3−8z+4z2

4(−1+5z−6z2+2z3)


.

We compute that

φ(z) =
1

4 − 20z + 24z2 − 8z3

and

R(z) = 8z(z − 2)(1 − z)2.

The eigenvalues of D, written with multiplicities,
are

σ(D) =
{

1
2

(
2 +

√
2
)

, 1,
1
2

(
2 −

√
2
)}

with corresponding eigenvectors

{{1,−
√

2, 1}, {−1, 0, 1}, {1,
√

2, 1}}.
One can also compute

σ(M) =
{

2,
1
2
(2 +

√
2), 1,

1
2
(2 −

√
2), 0

}
.

It is easy to see that φ(z) �= 0. Thus, the exceptional
set is

E(M0,M) =
{

1
2
(2 +

√
2), 1,

1
2
(2 −

√
2)
}

.

To begin the analysis of the exceptional values, note
that R(z) does not have any poles. We are inter-
ested in the values of R(z) at the exceptional points,
which are

R

(
1
2
(2 +

√
2)
)

= 2, R(1) = 0,

R

(
1
2
(2 −

√
2)
)

= 2.

Once again, d
dz R(z) = 0 at these points, and by

Proposition 3.1(6) we have

multn

(
1
2
(2 +

√
2)
)

= multn(1)

= multn

(
1
2
(2 −

√
2)
)

= 1

for all n.

5. SIERPIŃSKI GASKET

Spectral analysis on the Sierpiński gasket originates
from the physics literature including Refs. 18 and
19 and is well known.2,10, 13, 20–22 In this section
we show how one can study it using our meth-
ods. Note that Sierpiński lattices recently appeared
as the Schreier graphs of so-called Hanoi tower
groups5,23–25 (see also Ref. 26).

Figure 6 shows the depth 1 approximation to the
Sierpiński gasket. The depth 1 Laplacian matrix
M = M1, which is obtained from the above
figure, is

M =




1 0 0 0 −1
2 −1

2

0 1 0 −1
2 0 −1

2

0 0 1 −1
2 −1

2 0

0 −1
4 −1

4 1 −1
4 −1

4

−1
4 0 −1

4 −1
4 1 −1

4

−1
4 −1

4 0 −1
4 −1

4 1




.
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The eigenfunction extension map is

(D − z)−1C =




1
−5+2(7−4z)z

2(−1+z)
5+2z(−7+4z)

2(−1+z)
5+2z(−7+4z)

2(−1+z)
5+2z(−7+4z)

1
−5+2(7−4z)z

2(−1+z)
5+2z(−7+4z)

2(−1+z)
5+2z(−7+4z)

2(−1+z)
5+2z(−7+4z)

1
−5+2(7−4z)z


 .

From these we have that (Fig. 7)

φ(z) =
3 − 2z

5 − 14z + 4z2

and

R(z) = (5 − 4z)z.

The eigenvalues of M written with multiplicities
are

σ(M) =
{

3
2
,
3
2
,
3
2
,
3
4
,
3
4
, 0
}

and the corresponding eigenvectors are {−1,
−1, 0, 0, 0, 1}, {−1, 0,−1, 0, 1, 0}, {0,−1,−1, 1, 0, 0},

Fig. 6 The Sierpiński gasket and its V1 network.

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Fig. 7 The graph of R(z) for the Sierpiński gasket.

{2, 0,−2,−1, 0, 1}, {2,−2, 0,−1, 1, 0}, {1, 1, 1, 1, 1,
1}. The eigenvalues of D written with multiplici-
ties are

σ(D) =
{

5
4
,
5
4
,
1
2

}

and the corresponding eigenvectors are
{−1, 0, 1}, {−1, 1, 0}, {1, 1, 1}. The equation ϕ =
0 has as its solution {3

2} so the exceptional
set is

E(M0,M) =
{

5
4
,
1
2
,
3
2

}
.

We can find the multiplicities of these exceptional
values by using Proposition 3.1.

For the value 5
4 , which is a pole of φ(z) and

in σ(D), we use Proposition 3.1(3) to find the
multiplicities:

mult1

(
5
4

)
= 2 − 3 + 1 = 0,

mult2

(
5
4

)
= 6 − 6 + 1 = 1,

mult3

(
5
4

)
= 18 − 15 + 1 = 4.

For the value 1
2 , which is also a pole of φ(z) and

in σ(D), we again use Proposition 3.1(3) to find the
multiplicities:

mult1

(
1
2

)
= 1 − 3 + 2 = 0,

mult2

(
1
2

)
= 3 − 6 + 3 = 0,

mult3

(
1
2

)
= 9 − 15 + 6 = 0.

For the value 3
2 , since 3

2 /∈ σ(D) and φ(3
2) = 0,

we use Proposition 3.1(2) to find the multiplicities.
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Table 1 Ancestor-Offspring Structure of
the Eigenvalues on the Sierpiński Gasket.

Here the multiplicity of 3
2 in the nth depth is equal

to the dimension at depth n − 1.

mult1

(
3
2

)
= 3, mult2

(
3
2

)
= 6,

mult3

(
3
2

)
= 15.

Table 1 shows the ancestor-offspring structure of
the eigenvalues of the Sierpiński gasket. The symbol
* indicates the branches

ξ1(z) =
5 −√

25 − 16z
8

and

ξ2(z) =
5 +

√
25 − 16z
8

of the inverse function R−1(z) computed at the
ancestor value z. By Proposition 3.1(1) the ances-
tor and the offspring have the same multiplicity.
The empty columns represent exceptional values. If
they are eigenvalues of the appropriate Mn, then
the multiplicity is shown in the right hand part of
the same row.

By induction one can obtain the following propo-
sition, which is known in the case of the Sierpiński
gasket (see Refs. 2, 13 and 21).

Notation R−n is used for the pre-image of a set A
under the nth composition power of the function R.

Proposition 5.1. (i) σ(M0) = {0, 3
2}.

(ii) For any n � 0

σ(Mn) ⊂
n⋃

m=0

R−m

{
0,

3
2

}

and for any n � 1 we have

σ(Mn) =
{

3
2

}⋃(
n−1⋃
m=0

R−m

{
0,

3
4

})
.

In particular, for n � 2

σ(Mn) =
{

0,
3
2

}⋃(
n−1⋃
m=0

R−m

{
3
4

})

⋃(
n−2⋃
m=0

R−m

{
5
4

})
.

(iii) For any n � 0, dimn = 3n+1+3
2 .

(iv) For any n � 0, multn(0) = 1.
(v) For any n � 0, multn

(
3
2

)
= 3n+3

2 .
(vi) If z ∈ R−k{3

4} then multn(z) = 3n−k−1+3
2 for

n � 1, 0 � k � n − 1.
(vii) If z ∈ R−k{5

4} then multn(z) = 3n−k−1−1
2 for

n � 2, 0 � k � n − 2.

Corollary 5.2. The normalized limiting distribu-
tion of eigenvalues (the integrated density of states)
is a pure point measure κ with the set of atoms{

3
2

}⋃( ∞⋃
m=0

R−m

{
3
4

})⋃( ∞⋃
m=0

R−m

{
5
4

})
.

Moreover,

κ

({
3
2

})
=

1
3
,

and

κ({z}) = 3−m−1

if z ∈ R−m{3
4 , 5

4}.
The second and third claim of the corollary fol-

low from the proposition by taking the multiplic-
ity of an eigenvalue at depth n and dividing it by
the number of eigenvalues of the depth n Laplacian,
counting multiplicities, then limiting n to ∞.

6. HEXAGASKET

The hexagasket, or the hexakun, is a fractal which
in different situations (Refs. 2, 4, 27–31 and refer-
ences therein) is called a polygasket, a six-gasket,
or a (2, 2, 2)-gasket. The depth 1 approximation to
it is shown in Fig. 8.
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Fig. 8 The hexagasket and its V1 network.

The matrix of the depth 1 Laplacian M1 = M is




1 0 0 −1
2 −1

2 0 0 0 0 0 0 0

0 1 0 0 0 −1
2 −1

2 0 0 0 0 0

0 0 1 0 0 0 0 −1
2 −1

2 0 0 0

−1
4 0 0 1 −1

4 0 0 0 −1
4 −1

4 0 0

−1
4 0 0 −1

4 1 −1
4 0 0 0 0 −1

4 0

0 −1
4 0 0 −1

4 1 −1
4 0 0 0 −1

4 0

0 −1
4 0 0 0 −1

4 1 −1
4 0 0 0 −1

4

0 0 −1
4 0 0 0 −1

4 1 −1
4 0 0 −1

4

0 0 −1
4 −1

4 0 0 0 −1
4 1 −1

4 0 0

0 0 0 −1
2 0 0 0 0 −1

2 1 0 0

0 0 0 0 −1
2 −1

2 0 0 0 0 1 0

0 0 0 0 0 0 −1
2 −1

2 0 0 0 1




and the eigenfunction extension map (D − z)−1C is the matrix


−4 + z(23 + 4z(−9 + 4z)) −1 + z −2 + (7 − 4z)z
−4 + z(23 + 4z(−9 + 4z)) −2 + (7 − 4z)z −1 + z

−2 + (7 − 4z)z −4 + z(23 + 4z(−9 + 4z)) −1 + z

−1 + z −4 + z(23 + 4z(−9 + 4z)) −2 + (7 − 4z)z
−1 + z −2 + (7 − 4z)z −4 + z(23 + 4z(−9 + 4z))

−2 + (7 − 4z)z −1 + z −4 + z(23 + 4z(−9 + 4z))
−3 + 4(3 − 2z)z −1 −3 + 4(3 − 2z)z
−3 + 4(3 − 2z)z −3 + 4(3 − 2z)z −1

−1 −3 + 4(3 − 2z)z −3 + 4(3 − 2z)z



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Fig. 9 The graph of R(z) for the hexagasket.

divided by (1 − 6z + 4z2)(7−24z+16z2). Moreover,
we compute that (Fig. 9)

φ(z) =
3 + 4(z − 2)z

(1 − 6z + 4z2) (7−24z+16z2)
and

R(z) =
2z(z − 1)(7 − 24z + 16z2)

2z − 1
.

The eigenvalues of D, written with multiplici-
ties, are

σ(D) =
{

3
2
,
3
2
,
3
2
,
1
4
(3 ±

√
5),

1
4
(3 ±

√
2),

1
4

(
3 ±

√
2
)}

.

One can also compute

σ(M) =
{

3
2
,
3
2
,
3
2
,
3
2
,
3
2
,
3
2
, 1,

3
4
,
3
4
,
1
4
,
1
4
, 0
}

with the corresponding eigenvectors {0, 1, 0, 0, 0,
0, −1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, −1, 0, 0, 0, 0, 0, 1,
0}, {1, 0, 0, −1, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 0, −1, −1,
0, 0, 0, 0, 1, 0, 0, 0}, {0, 1, −1, 0, 0, 0, −1, 1, 0, 0,
0, 0}, {1, −1, 0, 0, −1, 1, 0, 0, 0, 0, 0, 0}, {−1, −1,
−1, 0, 0, 0, 0, 0, 0, 1, 1, 1}, {1, −1, 0, 0, 1

2 , −1
2 , 0,

1
2 , −1

2 , −1, 0, 1}, {0, −1, 1, −1
2 , 1

2 , 0, −1
2 , 1

2 , 0, −1,
1, 0}, {−1, 1, 0, −1, −1

2 , 1
2 , 1, 1

2 , −1
2 , −1, 0, 1}, {0,

1, −1, −1
2 , 1

2 , 1, 1
2 , −1

2 , −1, −1, 1, 0}, {1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1}.

It is easy to see that φ(z) = 0 has two solutions
1
2 and 3

2 . Thus, the exceptional set is

E(M0,M) =
{

3
2
,
1
4
(3 ±

√
5),

1
4
(3 ±

√
2),

1
2

}
.

To begin the analysis of the exceptional values,
note that 1

2 is the only pole of R(z) and therefore
is not an eigenvalue by Proposition 3.1(7).

It is easy to see that 1
4(3±√

2) and 1
4(3±√

5) are
the four poles of φ(z) and so we can use Proposi-
tion 3.1(3) to compute the multiplicities. We obtain

mult1

(
1
4
(3 ±

√
2)
)

= 60 · 2 − 3 + 1 = 0,

mult2

(
1
4
(3 ±

√
2)
)

= 61 · 2 − 12 + 1 = 1,

mult1

(
1
4
(3 ±

√
5)
)

= 60 · 1 − 3 + 2 = 0,

mult2

(
1
4
(3 ±

√
5)
)

= 61 · 1 − 12 + 6 = 0.

The exceptional value 3
2 is in the spectrum σ(D),

not a pole of φ(z) and φ(3
2 ) = 0. For this rea-

son we can use Proposition 3.1(5) to compute the
multiplicities.

mult1

(
3
2

)
= 60 · 3 + 0 + 3 = 6,

mult2

(
3
2

)
= 61 · 3 + 0 + 12 = 30.

As in the other sections, the multiplicities of all
eigenvalues at depths 0, 1 and 2 are shown in
Table 2. The following theorem and corollary sum-
marize the absolute and relative multiplicities of
eigenvalues on the hexagasket.

Theorem 6.1. (i) σ(M0) = {0, 3
2}.

(ii) We have that σ(M1) =
{
0, 1

4 , 3
4 , 1, 3

2

}
and for

n � 2 we have

σ(Mn)
{

0,
3
2

} ⋃ (n−1⋃
m=0

R−m

{
1,

1
4
,
3
4

})

⋃ (n−2⋃
m=0

R−m

{
3 ±√

2
4

})
.

(iii) For any n � 0 we have dimn = 6+9·6n

5 .

(iv) For any n � 0, multn(0) = 1 and multn(3
2 ) =

6+4·6n

5 .
(v) For any n � 1 and 0 � k < n − 1 we have

that if z ∈ R−k(1) then multn(z) = 1.
(vi) For any n � 1 and 0 � k < n − 1 we have

that if z ∈ R−k{1
4 , 3

4} then

multn(z) =
6 + 4 · 6n−k−1

5
.
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Table 2 Ancestor-Offspring Structure of the Eigenvalues
on the Hexagasket.

(vii) For any n � 2 and 0 � k < n − 2 we have
that if z ∈ R−k(3±√

2
4 ) then

multn(z) =
6n−k−1 − 1

5
.

(viii) For n � 0 we have multn(3±√
5

4 ) = 0.

Proof. For this fractal we have σ(D) = {0, 3
2} with

mult0

(
3
2

)
= 2 and, for the purposes of Proposi-

tion 3.1, m = 6.
Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Item (iii) is straightforward by induction.
Item (iv) follows from Proposition 3.1(1) because

0 is a fixed point of R(z), and from Proposi-
tion 3.1(5).

Items (v) and (vi) follow from Proposition 3.1(1).
Items (vii) and (viii) follow from Proposi-

tion 3.1(3).

Corollary 6.1. The normalized limiting distribu-
tion of eigenvalues (the integrated density of states)
is a pure point measure κ with the set of atoms

{
3
2

}⋃( ∞⋃
m=0

R−m

{
1
4
,
3
4
,
3 ±√

2
4

})
.

Moreover, κ
({3

2}
)

= 4
9 , and

κ({z}) =
4
9
6−m−1 if z ∈ R−m

{
1
4
,
3
4

}
;

κ({z}) =
1
9
6−m−1 if z ∈ R−m

{
3 ±√

2
4

}
.

7. A NON-P.C.F. ANALOG OF
THE SIERPIŃSKI GASKET

Several non-p.c.f. analogs of the Sierpiński gasket
were introduced in Ref. 29. Here we analyze the
simplest one of them. It is finitely ramified but not
p.c.f. in the sense of Kigami. This fractal can be
constructed as a self-affine fractal in R

2 using six
affine contractions, as shown in Ref. 29. One affine
contraction has the fixed point (0, 0) and the matrix(

1
2

1
6

1
4

1
4

)
,

and the other five affine contractions can be
obtained by combining this one with the symmetries
of the equilateral triangle with vertices (0, 0), (1, 0)
and (1

2 ,
√

3
2 ). Figure 10 shows the fractal and the V1

network for it. It is proved in Ref. 29 that this par-
ticular embedding into R

2 has the advantage that
the set restrictions of C1(R2) functions to the frac-
tal is dense in the domain of the energy form E . It
is significantly more difficult to describe the domain
of the Laplacian, as explained in Ref. 32. Note that
Ref. 29 considers the same energy (Dirichlet) form,
but a different Laplacian.

Fig. 10 The non-p.c.f. analog of the Sierpiński gasket and
its V1 network.
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The matrix of the depth 1 Laplacian M1 = M is

M =




1 0 0 0 −1
4 −1

4 −1
2

0 1 0 −1
4 0 −1

4 −1
2

0 0 1 −1
4 −1

4 0 −1
2

0 −1
4 −1

4 1 0 0 −1
2

−1
4 0 −1

4 0 1 0 −1
2

−1
4 −1

4 0 0 0 1 −1
2

−1
6 −1

6 −1
6 −1

6 −1
6 −1

6 1




and the eigenfunction extension map is

(D − z)−1C =




− 1
6−18z+12z2

−5+6z
12(1−3z+2z2)

−5+6z
12(1−3z+2z2)

−5+6z
12(1−3z+2z2) − 1

6−18z+12z2
−5+6z

12(1−3z+2z2)

−5+6z
12(1−3z+2z2)

−5+6z
12(1−3z+2z2) − 1

6−18z+12z2

1
−3+6z

1
−3+6z

1
−3+6z




.

Moreover, we compute that

φ(z) =
15 − 14z

24 − 72z + 48z2

and

R(z) = −24z(z − 1)(2z − 3)
14z − 15

.

The eigenvalues of D, written with multiplicities,
are

σ(D) =
{

3
2
, 1, 1,

1
2

}

with corresponding eigenvectors {−1,−1,−1, 1},
{−1, 0, 1, 0}, {−1, 1, 0, 0}, {1, 1, 1, 1}. One can also
compute

σ(M) =
{

3
2
,
3
2
,
5
4
,
5
4
,
3
4
,
3
4
, 0
}

with the corresponding eigenvectors {−1,−1,−1, 0,
0, 0, 1}, {−1,−1,−1, 1, 1, 1, 0}, {−1, 0, 1,−1, 0, 1, 0},
{−1, 1, 0,−1, 1, 0, 0}, {1, 0,−1,−1, 0, 1, 0}, {1,−1, 0,
−1, 1, 0, 0}, {1, 1, 1, 1, 1, 1, 1} (Fig. 11).

It is easy to see that φ(z) = 0 has one solution
{15

14}. Thus, the exceptional set is

E(M0,M) =
{

3
2
, 1,

1
2
,
15
14

}
.

To begin the analysis of the exceptional values,
note that 15

14 is a pole of R(z) and therefore is not

an eigenvalue by Proposition 3.1(7). We are inter-
ested in the values of R(z) in the other exceptional
points, which are

R(1) = R

(
3
2

)
= 0 and R

(
1
2

)
=

3
2
.

It is easy to see that 1 and 1
2 are poles of φ(z)

and so we can use Proposition 3.1(3) to compute
the multiplicities. We obtain

mult1(1) = 2 − 3 + 1 = 0,

mult1

(
1
2

)
= 1 − 3 + 2 = 0,

mult2(1) = 12 − 7 + 1 = 6,

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Fig. 11 The graph of R(z) for the non-p.c.f. analog of the
Sierpiński gasket.
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Table 3 Ancestor-Offspring Struc-
ture of the Eigenvalues on the
Non-p.c.f. Analog of the Sierpińki
Gasket.

and

mult2

(
1
2

)
= 6 − 7 + 2 = 1.

Since 3
2 is not a pole of φ(z), we can use Proposi-

tion 3.1(4) to compute the multiplicities

mult1

(
3
2

)
= 1 + 1 = 2

and

mult2

(
3
2

)
= 6 + 1 = 7.

The ancestor-offspring structure of the eigenval-
ues on the non-p.c.f. analog of the Sierpiński gas-
ket is shown in Table 3. The symbol * indicates
branches of the inverse function R−1(z) computed
at the ancestor value. The multiplicity of the ances-
tor is the same as that of the offspring by Proposi-
tion 3.1(1). The empty columns correspond to the
exceptional values. If they are eigenvalues of the
appropriate Mn, then the multiplicity is shown in
the right hand part of the same row. We have the
following theorem and corollary to summarize the
results at all depths.

Theorem 7.1. (i) For any n � 0 we have
that σ(∆n) ⊂ ⋃n

m=0 R−m({0, 3
2}) and σ(∆1) =

{0, 3
4 , 5

4 , 3
2}.

(ii) For n � 2 we have that

σ(∆n) =
{

0,
3
2

}⋃(
n−1⋃
m=0

R−m

{
3
4
,
5
4

})

⋃ (n−2⋃
m=0

R−m

{
1
2
, 1
})

.

(iii) For any n � 0 we have dimn = 11+4·6n

5 .

(iv) For any n � 0 we have multn(0) = 1.
(v) For any n � 1 we have multn

(
3
2

)
= 6n−1 + 1.

(vi) For any n � 1 and z ∈ R1−n{3
4 , 5

4} we have
that multn(z) = 2.

(vii) For any 0 � m � n − 2 and z ∈ R−m{3
4 , 5

4}
we have that

multn(z) = multn−m−1

(
3
2

)
= 6n−m−2 + 1.

(viii) For any 0 � m � n − 2 and z ∈ R−m{1
2} we

have multn

(
1
2

)
= 11·6n−m−2−6

5 .

(ix) For any 0 � m � n − 2 and z ∈ R−m{1} we
have multn(1) = 6n−m−6

5 .

Proof. For this fractal we have σ(∆0) = {0, 3
2}

with mult0

(
3
2

)
= 2 and, for the purposes of Propo-

sition 3.1, m = 6.
Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Item (iii) is straightforward by induction.
Item (iv) follows from Proposition 3.1(1) because

0 is a fixed point of R(z).
Item (v) easily follows from Proposition 3.1(4).
Items (vi) and (vii) follows from the items above.
Items (viii) and (ix) follows from Proposi-

tion 3.1(3) because

multn

(
1
2

)
= 6n−1 · 1 − 11 + 4 · 6n−1

5
+ 6n−2 + 1

=
11 · 6n−2 − 6

5
,

multn(1) = 6n−1 · 2 − 11 + 4 · 6n−1

5
+ 1

=
6n − 6

5
.

Corollary 7.1. The normalized limiting distribu-
tion of eigenvalues (the integrated density of states)
is a pure point measure κ with the set of atoms

∞⋃
m=0

R−m

{
3
2
, 1
}

,

where κ
({3

2}
)

= 5
24 and

κ({z}) =
5
4
6−m−2 if z ∈ R−m

{
3
4
,
5
4

}
;

κ({z}) =
11
4

6−m−2 if z ∈ R−m

{
1
2

}
;

κ({z}) =
1
4
6−m if z ∈ R−m{1}.
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8. CONCLUSION

While the method we have described and used sev-
eral times in this paper does require some steps
that are not readily automated, the very low com-
putational demands make it practical to apply this
to even very complicated fractals provided there is
enough symmetry and a nice enough cell structure.
With the availability of computer algebra systems
the computations to calculate the functions R(z)
and φ(z) for a given fractal this step is only time
consuming if the fractal has dozens of boundary
points. The one computational step that we have
not considered is giving an approximation of the
Julia set of R(z) for any of these fractals. This is
because, despite the aesthetic value of the pictures,
there is no novelty in such calculations.

One of the applications of our results is to pro-
duce examples of Laplacians on fractals with large
spectral gaps and nicer analogs of Fourier series (i.e.
eigenfunction expansions), according to Ref. 33 (see
also Refs. 34 and 35). Another set of applications
is related to the localization of eigenfunctions (see
Refs. 13, 36 and 37) and quantum and metric graphs
(see Refs. 29, 38–42).
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