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Plan:

(1) Spectral and sub-Riemannian heat kernel convergence: SU (2) −→ H

(2) Discrete spectrum and eigenfunction estimates for DMMS

(3) Irreducibility

(4) Fractals ( ... if time permits ... )



ASYMPTOTIC DILATIONS

Contraction Φ : SU (2) −→ H

▶ Both groups are equipped with a sub-Riemannian structure

▶ Heisenberg group H viewed as a re-scaled limit of SU (2) near the identity

Convergence of the re-normalized spectrum in SU(2) to the spectrum in the
unit ball of H

Theorem (Carfagnini, Gordina, Teplyaev)

▶ 0 < λH
1 < λH

2 ⩽ λH
3 ⩽ ... Dirichlet eigenvalues in the unit ball BH

1 in
H, counted with multiplicity

▶ 0 < λr
1 < λr

2 ⩽ λr
3 ⩽ ... Dirichlet eigenvalues in the r-ball B

SU(2)
r

in SU(2), counted with multiplicity

=⇒ lim
r→0

r2λr
n = λH

n n ⩾ 1
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the Heisenberg ball [picture made by Nate Eldredge]



MOSCO CONVERGENCE, STRONG AND
NORM RESOLVENT CONVERGENCE

▶ Mosco convergence is equivalent to the strong resolvent convergence,
which does not imply the convergence of eigenvalues.

▶ The norm resolvent convergence is stronger than the strong resolvent con-
vergence and it does imply the convergence of eigenvalues.

▶ ▶ We aim at even stronger uniform convergence of resolvent and heat
kernels and eigenfunctions using Dynkin-Hunt formula:

pUt (x, y) := pt(x, y) − Ex
[
1{τU<t} pt−τU

(
XτU, y

)]
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CONVERGENCE OF THE DIRICHLET HEAT KERNELS

▶ p
U,H
t (·, ·) Dirichlet heat kernel in U ⊂ H

▶ p
V,SU(2)
t (·, ·) Dirichlet heat kernel in V ⊂ SU (2)

Lemma (Carfagnini, Gordina, Teplyaev) For each t > 0

lim
r→0

r4p
Vr,SU(2)

r2t

(
Φ−1

(
δHr (x)

)
,Φ−1

(
δHr (x)

))
= p

U,H
t (x, y)

uniformly for x, y ∈ U, which is an arbitrary bounded open subset

of H. Here Vr := Φ−1
(
δHr (U)

)
⊂ SU.

Corollary (Carfagnini, Gordina, Teplyaev) For each t > 0

lim
r→0

r4p
B

SU(2)
r

r2t

(
Φ−1

(
δHr (x)

)
,Φ−1

(
δHr (x)

))
= p

BH
1

t (x, y)

uniformly for x, y ∈ BH
1



LOCAL CONVERGENCE OF STOCHASTIC FLOWS

▶ gs hypoelliptic Brownian motion on SU (2)

▶ Xs hypoelliptic Brownian motion on H

Lemma (Carfagnini, Gordina, Teplyaev) For small enough r there is a con-
tinuous stochastic process Y r

s in H such that

Y r
s :=: δH1/rΦ

(
gr2s

)
s < inf{t : dH(I, Y r

s ) ⩾ 1}
in the sense of distributions and

lim
r→0

sup
0⩽s⩽T

|Y r
s − Xs| = 0

in probability.

Proof. ... Kunita 1986 Lectures on stochastic flows and applications, ...
plus geometric localization arguments. □
“Elliptic results” + pointed Gromov-Hausdorff convergence:
Hui-Chun Zhang and Xi-Ping Zhu. Weyl’s law on RCD(K,N) metric measure
spaces. Comm. Anal. Geom. 2019.



NASH INEQUALITY

• Carlen-Kusuoka-Stroock ’87: Nash inequality pt(x, y) ⩽ ct−ν/2

∥f∥2+
4
ν

L2(X,µ)
⩽ CE(f, f)∥f∥

4
ν
L1(X,µ)

f ∈ DE

∥Ptf∥L∞(X,µ) ⩽ C t−ν/2∥f∥L1(X,µ) f ∈ L1(X, µ), t > 0

• ultracontractivity, Davies, Varopoulos et al

• M. Carfagnini, M. Gordina and A. Teplyaev: Riemannian manifolds with
non-negative Ricci curvature, self-similar processes, not necessarily continuous;
Brownian motion on fractals; Dirichlet forms on mms under Sturm’s assump-
tions (complete closed balls, doubling, weak Poincaré, PHI); group action on
metric measure spaces, convergence of spectra



DISCRETE SPECTRUM FOR DIRICHLET FORMS

Proposition [Carfagnini, Gordina, Teplyaev] Assuming ultracontractivity,

• µ(U) < ∞ =⇒ the spectrum of AU is discrete and the heat kernel
pUt (x, y) has the usual eigenfunction expansion

• λ1 > 0 if lim
t→∞

ess sup
(x,y)∈U×U

pUt (x, y) → 0

Example [Bounded domains, continuous spectrum] Note that there are well-
known examples of bounded domains in R2 such that Neumann Laplacian has
no discrete spectrum, e. g. B. Simon 1991, 1992, “jelly roll”.

Example [Unbounded domains, discrete spectrum] Note that there are well-
known examples of Scḧrodinger operators on unbounded metric measure spaces
of infinite measure with purely discrete spectrum, e. g. B. Simon 2009.



GENERALIZED HEAT CONTENT

QU(t) :=

∫

U
Px (τU > t) dm(x) =

∫

U
u(t, x)dx

Theorem (C-G-T) Under ultracontractivity and other usual assumptions for
any open set U of finite measure

lim
t→∞

eλ1tQU(t) =

M1∑

k=1

c2k,

where ck :=
∫
Uϕk(x)dm(x), and M1 is the multiplicity of λ1.

Again, no regularity of the boundary is assumed.



ESTIMATES OF EIGENFUNCTIONS

Theorem (C-G-T) Under the usual assumptions and the Nash inequality, for
any open set U of finite measure, the spectrum is discrete and eigenfunctions
satisfy

∥φn∥L∞ ⩽ cλδ
n∥φn∥L2

where c is a constant depending on U and δ.
Again, no regularity of the boundary is assumed.

• This inequality was obtained by Jun Kigami in the case
of self-similar p.c.f. fractals, formula (4.5.1).

Our article contains more detailed estimates in more general ultracontractive
cases and under more specific heat kernel bounds. Usually

δ =
α

β
=

ν

2
where the space is Alhfors α-regular and β is the time scaling exponent if the
process is (distance-)self-similar :

d(Xx
tε, x)

(d)
= ε

1
βd(Xx

t , x).



SMALL DEVIATIONS

Theorem [Carfagnini, Gordina, Teplyaev] Assume that

▶ P
B1(x)
t is irreducible for some x ∈ X

▶ the heat kernel p
B1(x)
t (x, y) exists for all t and for all x, y ∈ X and

that

pt(x, y) ⩽ c t
−α

β for any t, x, y

▶ there exists a t0 such that p
B1(x)
t0

(x, y) is continuous for x, y ∈ X

▶ Xx
t is self-similar

=⇒

• lim
ε→0

e
λ1

t

εβPx

(
sup

0⩽s⩽t
d(Xs, x) < ε

)
= c1φ1(x),

where λ1 > 0 is the spectral gap of AB1(x) with zero boundary condi-
tions outside of the unit ball B1(x), and φ1 is the corresponding positive
eigenfunction, cn :=

∫
U φn(y)µ (dy)



GROUP ACTIONS ON DMMS

Let G be a topological group acting measurably on a metric measure space
(X, d, µ), that is, there is a measurable map

Φ : G × X −→ X, (g, x) −→ Φg(x) =: xg

such that

Φe(x) = x for µ − a.e. x ∈ X

Φg(Φh(x)) = Φgh(x) for all g, h ∈ G, and µ − a.e. x ∈ X.

Here e is the identity element in G.

Such a group action induces an action on L2-functions on G as follows

Φ̃ : G × L2(X, µ) −→ L2(X, µ), (Φ̃gf)(x) = f(Φg(x)).

Let us denote by (Φg)∗m the pushforward of m under Φg : X → X.



Definition The action of a group G on a Dirichlet metric measure space
(X, d, µ,E) is said to be a group action preserving the Dirichlet space class
if it is a measurable action on (X, d, µ) such that

Φ̃g(DE) = DE, Φ̃g(DA) = DA,

(Φg)∗µ and µ are mutually absolutely continuous for all g ∈ G, and the
Radon-Nikodym derivative

Jg :=
d(Φg)∗µ

dµ
(x)

is independent of x ∈ X.

Definition We say that a Dirichlet metric measure space (X, d, µ,E) ad-
mits a G-dilation structure if the action of G on (X, d, µ,E) preserves the
Dirichlet space class and if there exists κ = κ (g) such that

E(f ◦ Φg, h ◦ Φg) = Jκ
g E(f, h),(1)

for any f, h ∈ DE.



IRREDUCIBILITY

A Borel set A ∈ B (X) is Pt-invariant if Pt (1Af) = 0 µ-a.e. on A for
every t > 0 and f ∈ L2 (X, µ).

The semigroup {Pt}t⩾0 is called irreducible if for any Pt-invariant set A
either µ (A) = 0 or µ (Ac) = 0.

▶ Suppose a diffusion has an a.e. positive heat kernel.
Is this diffusion irreducible in each path-connected open set (killed
at exiting this open set)?

(As usual, no regularity of the boundary is assumed.)

... the intuitive answer is “yes” ...



▶ If a diffusion has a positive heat kernel, then is this diffusion
irreducible in each path-connected open set (killed at exiting this
open set)? ... there are examples with the negative answer.

Example [Reducible local Dirichlet form on a connected set] Let X = R2

with the Euclidean metric, and µ be the Lebesgue measure on X, S be a non-
trivial straight line segment in R2. Consider the Dirichlet form corresponding
to the standard two-dimensional Brownian motion Xt killed at the first time
it reaches S. Then Pt is irreducible in R2, but it is reducible in any disk U

which is separated by S into two non-empty parts.

Example [Reducible non-local Dirichlet form on a connected set] Let

A := {(x, y) ∈ R2 × R2 : |x − y| < 1 and [x, y] ∩ S = ∅},
where [x, y] denotes a straight line interval connecting x and y. Let

E(f, g) :=

∫

R2×R2

(f(x) − f(y)) (g(x) − g(y))1A(x, y) dxdy.

Then E is irreducible, but EU is reducible if U is again any disk which is
separated by S into two non-empty parts.



Proposition [Irreducibility of the semigroup] Assume that the heat kernel
pt(x, y) exists for all t and all x, y ∈ X and U is an open path-connected
set in X. The semigroup PU

t is irreducible if for any y ∈ U and r small
enough and x ∈ Br(y) there exists t0 = t0(x, y, r) such that for any
z ∈ Uc and any s < t < t0

pt(x, y) − ps(z, y) > 0.

Corollary Let (X, d, µ) satisfy the chain condition, andU is path-connected,

c1 t
−α

β Φ

(
c2

d(x, y)

t
1
β

)
⩽ pt(x, y) ⩽ c3

(
t
−α

β + 1
)
Φ

(
c4

d(x, y)

t
1
β

)
,

where Φ is a positive decreasing function on [0,∞) with

lim
r→∞ rαΦ(r) = 0

then PU
t is irreducible.



FRACTALS (OR FRACTAFOLDS∗)

▶ *Strichartz: A fractafold, a space that is locally modeled on a specified
fractal, is the fractal equivalent of a manifold.

▶ A “fractafold” is to a fractal what a manifold is to a Euclidean
half-space.
▶ There is no generally agreed upon definition of “fractal”, other than

“I know one when I see one”:

Motivation: Strichartz’89, Harmonic analysis as spectral theory of Laplacians



Nuclear Physics B280 [FS 18] (1987) 147-180 
North-Holland, Amsterdam 

METRIC SPACE-TIME AS FIXED POINT 

OF THE RENORMALIZATION GROUP EQUATIONS 

ON FRACTAL STRUCTURES 

F. ENGLERT, J.-M. FRI~RE x and M. ROOMAN 2 

Physique Thkorique, C.P. 225, Universitb Libre de Bruxelles, 1050 Brussels, Belgium 

Ph. SPINDEL 

Facultb des Sciences, Universitb de l'Etat it Mons, 7000 Mons, Belgium 

Received 19 February 1986 

We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 

0619-6823/87/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = /3/(,8 + 1) separates the domain of euclidean 
metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation



The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the

PRL 95, 171301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 OCTOBER 2005



Fractal space-times under the microscope:
A Renormalization Group view on Monte Carlo data
[Martin Reuter, Frank Saueressig]:

Three scaling regimes of the effective space-times of asymptotically safe Quan-
tum Einstein Gravity (QEG):

(1) a classical regime ds = d, dw = 2,
(2) a semi-classical regime ds = 2d/(2 + d), dw = 2 + d,
(3) the UV-fixed point regime ds = d/2, dw = 4.

On the length scales covered by three-dimensional Monte Carlo simulations,
the resulting spectral dimension is in very good agreement with the data
and provides a natural explanation for the apparent puzzle between the short
distance behavior of the spectral dimension reported from Causal Dynami-
cal Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

•Quasisymmetric uniformization and heat kernel estimates by Mathav Mu-
rugan: dw = df which is consistent with ds = 2df/dw = 2



Timothy Budd, Radboud University Nijmegen
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sub-Gaussian heat kernel estimates (sGHKE)

(2) pt(x, y) ∼ 1

tdf/dw
exp


−c

d(x, y)
dw

dw−1

t
1

dw−1




distance ∼ (time)
1
dw

df = Hausdorff dimension
1
γ = dw = “walk dimension” (γ=diffusion index)

2df
dw

= dS = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980’—)



1 = dt = dmart < dtH =
ln 2

ln 3
+1 < dS < df =

ln 8

ln 3
< 2 < dw

For Sierpinski carpets there exists a unique Dirichlet form and diffusion pro-
cess due to [Barlow and Bass 1998, 1999] (see also [Barlow-Bass-Kumagai-T
2010]).

dmart = 1 is a deep result of Kusuoka-Hino, see also Kajino-Murugan.



Here dtH =
ln 2

ln 3
+1 is the topological-Hausdorff dimension of the

Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension:
the topological Hausdorff dimension. Adv. Math. 2015.]

Roughly speaking:

dtH := 1 + inf{Hausdorff dim. of boundaries of a base of open sets}



Open questions:

On the Sierpinski carpet,

κ = dW − df + dtH − 1 = dW − df +
log 2

log 3
would give the best Hölder exponent for harmonic functions?
[Numerical results: L.Rogers et al]

Note that (dW − df) –Hölder continuity is known: Martin Barlow. Diffusions

on fractals. In Lectures on probability theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture Notes in

Math. Springer, 1998. Heat kernels and sets with fractal structure. In Heat kernels and analysis on manifolds,

graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11–40. Amer. Math. Soc.,

Providence, RI, 2003.



BV and weak Bakry-Émery non-negative curvature [P.Alonso-
Ruiz, F.Baudoin, L.Chen, L.Rogers, N.Shanmugalingam, A.T.]

Definition. BV (X) := KSλ
#
1 ,1(X) = B1,α

#
1 (X) with α

#
1 =

λ
#
1

dW
the L1–Besov critical exponent, and for f ∈ BV (X)

Var(f) := lim inf
r→0+

∫∫

∆r

|f(y) − f(x)|
rλ

#
1 µ(B(x, r))

dµ(y) dµ(x).

Definition. We say that (X,µ,E,F) satisfies the weak-Bakry-Émery non-
negative curvature condition wBE(κ) if there exist a constant C > 0 and
a parameter 0 < κ < dW such that for every t > 0, g ∈ L∞(X,µ)
and x, y ∈ X,

|Ptg(x) − Ptg(y)| ≤ C
d(x, y)κ

tκ/dW
∥g∥L∞(X,µ).(3)



• If (X, d, µ) satisfies wBE(κ) with κ = dW
2 , then the form E admits

a carré du champ operator, which means that dw = 2 by
[Kajino-Murugan 2019 Ann. Probab. 48, 2020]

• κ ⩽ 1 because d(x, y) has to be essentially equivalent to a geodesic
metric [Corollary 1.8, Theorem 2.11 Mathav Murugan JFA 2020]

• For nested fractals, p.c.f. with sGHKE (2)

λ
#
1 = λ∗

1 = dWα∗
1 = df

• For the Sierpinski carpet we conjectured

λ
#
1 = λ∗

1 = df − dtH + 1

where dtH =
ln 2

ln 3
+ 1 is the topological-Hausdorff dimension of the

Sierpinski carpet.
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