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Plan:

(1) Spectral and sub-Riemannian heat kernel convergence: SU (2) — H
(2) Discrete spectrum and eigenfunction estimates for DMMS
(3) Irreducibility

(4) Fractals ( ... if time permits ... )



ASYMPTOTIC DILATIONS

Contraction @ : SU (2) — H

» Both groups are equipped with a sub-Riemannian structure
» Heisenberg group H viewed as a re-scaled limit of SU (2) near the identity

Convergence of the re-normalized spectrum in SU(2) to the spectrum in the
unit ball of

Theorem (Carfagnini, Gordina, Teplyaev)

> 0 < )\I]11] < )\ﬂzﬂ < )\"3ﬂ < ... Dirichlet eigenvalues in the unit ball BT] In
H, counted with multiplicity

> 0 < A¥ < AT < A% < ... Dirichlet eigenvalues in the r-ball BEU(Z)
1 2 3

in SU(2), counted with multiplicity

— linbr%\;:)ﬂ n>1
r—



SU(2) ~ 83

1 13

H-ball H ~ R3



SU(2) ~ S3

1 1g3

H-ball H ~ R3

the Heisenberg ball [picture made by Nate Eldredge]



MOSCO CONVERGENCE, STRONG AND
NORM RESOLVENT CONVERGENCE

» Mosco convergence is equivalent to the strong resolvent convergence,
which does not imply the convergence of eigenvalues.

» The norm resolvent convergence is stronger than the strong resolvent con-
vergence and it does imply the convergence of eigenvalues.

» » We aim at even stronger uniform convergence of resolvent and heat
kernels and eigenfunctions using Dynkin-Hunt formula:

P%((wa y) = pt(CE, y) — E* ]]-{Tu<t} Pt—my (XTuv y)}
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CONVERGENCE OF THE DIRICHLET HEAT KERNELS

> p}i’[H](-, +) Dirichlet heat kernel in U C H

> py’SU@)(-, +) Dirichlet heat kernel in V C SU (2)

Lemma (Carfagnini, Gordina, Teplyaev) For each ¢ > 0
: 4 Vp,SU(2 —1 ( cH —1 [ cH W,H
lim 77p 5, 2) (‘P (5r (fv)) , P (5r («’B))) =p; (T, Y)
uniformly for x, y € U, which is an arbitrary bounded open subset

of H. Here V. := &1 (5,944](11)) C SU.

Corollary (Carfagnini, Gordina, Teplyaev) For each ¢ > 0

B (071 (M@)o (6%@))) = 1 (2 0)

uniformly for &,y € B%ﬂ

lim r
r—0



LOCAL CONVERGENCE OF STOCHASTIC FLOWS

» g5 hypoelliptic Brownian motion on SU (2)

» X hypoelliptic Brownian motion on H

Lemma (Carfagnini, Gordina, Teplyaev) For small enough 7 there is a con-
tinuous stochastic process Y, in H such that

S
in the sense of distributions and

lim sup |Y,] — Xs| =0
r—0 0<s<T

Y7 i=: 55“/#1’ (9,2,) s <inf{t:dy(I,Y")>1}

In probability.
Proof. ... Kunita 1986 Lectures on stochastic flows and applications, ...
plus geometric localization arguments. []

“Elliptic results” + pointed Gromov-Hausdorff convergence:
Hui-Chun Zhang and Xi-Ping Zhu. Weyl's law on RCD(K,N) metric measure

spaces. Comm. Anal. Geom. 20109.



NASH INEQUALITY

e Carlen-Kusuoka-Stroock '87: Nash inequality p¢(x, y) < ct /2

4

o1 4 4
1£ 1 2, < CESE DN x,y € De

|Peflloo i < Ct 21 F g,y F € LHX, )yt > 0

e ultracontractivity, Davies, Varopoulos et al

e M. Carfagnini, M. Gordina and A. Teplyaev: Riemannian manifolds with
non-negative Ricci curvature, self-similar processes, not necessarily continuous;
Brownian motion on fractals; Dirichlet forms on mms under Sturm’s assump-
tions (complete closed balls, doubling, weak Poincaré, PHI); group action on
metric measure spaces, convergence of spectra



DISCRETE SPECTRUM FOR DIRICHLET FORMS

Proposition [Carfagnini, Gordina, Teplyaev] Assuming ultracontractivity,

e u(U) < oo = the spectrum of AW s discrete and the heat kernel
p?(aj, y) has the usual eigenfunction expansion

e A\ >0 if lim esssup p}i(a},y) — 0
t—00 (x,y)eEUXU

Example [Bounded domains, continuous spectrum] Note that there are well-
known examples of bounded domains in R? such that Neumann Laplacian has
no discrete spectrum, e. g. B. Simon 1991, 1992, “jelly roll".

Example [Unbounded domains, discrete spectrum| Note that there are well-
known examples of Schrodinger operators on unbounded metric measure spaces
of infinite measure with purely discrete spectrum, e. g. B. Simon 2009.



GENERALIZED HEAT CONTENT

Qu(t) := /u PT (7 > t) dm(x) = /u u(t, z)de

Theorem (C-G-T) Under ultracontractivity and other usual assumptions for
any open set U of finite measure

M4
l‘ )\]_t t — 2
Jim e Qu/(t) ];Ck,

where ¢, 1= [y ¢(x)dm(x), and My is the multiplicity of Aj.

Again, no regularity of the boundary is assumed.



ESTIMATES OF EIGENFUNCTIONS

Theorem (C-G-T) Under the usual assumptions and the Nash inequality, for
any open set U of finite measure, the spectrum is discrete and eigenfunctions
satisfy

lenllzoo < e llenllr
where c is a constant depending on U and 9.
Again, no regularity of the boundary is assumed.

e This tnequality was obtained by Jun Kigams in the case
of self-similar p.c.f. fractals, formula (4.5.1).

Our article contains more detailed estimates in more general ultracontractive

cases and under more specific heat kernel bounds. Usually
a v

3 2

where the space is Alhfors a-regular and 3 is the time scaling exponent if the
process is (distance-)self-similar:

AXE,z) D Pd(XF, ).



SMALL DEVIATIONS

Theorem [Carfagnini, Gordina, Teplyaev] Assume that

> PtBl(m) is irreducible for some £ € X

» the heat kernel ptBl(m)(w,y) exists for all £ and for all x,y € X and
that

pt(mv y) < ct B for any t,x,y

» there exists a g such that ptol(w)(a:, y) is continuous for x,y € X
» X is self-similar
p—

A L
o lime PP ( sup d(Xs, ) < e) = c1p1(x),
e—0 0<s<t

where A1 > 0 is the spectral gap of AB1(Z) \ith zero boundary condi-
tions outside of the unit ball By(x), and ¢1 is the corresponding positive

eigenfunction, ¢, := [; on(y)p (dy)



GROUP ACTIONS ON DMMS

Let G be a topological group acting measurably on a metric measure space
(X, d, ), that is, there is a measurable map

P:GXX—X,(g9,2) — Pg(x) =: x4
such that
Po(x) =xforp —ae xeX
Py (Pp(x)) = Pyp(x) forallg,h € G, and p —ae. = € X.
Here e is the identity element in GG,

Such a group action induces an action on L2-functions on G as follows
P:G X Lz(:xaﬂ) — LQ(:xv “)7 ((I)gf)(fc) — f((I)g(w))
Let us denote by (®4)+«m the pushforward of m under @4 : X — X.



Definition The action of a group GG on a Dirichlet metric measure space
(X, d, p, €) is said to be a group action preserving the Dirichlet space class
if it is a measurable action on (X, d, p) such that

Oy(Dg) = Dg, Py(Dy) = Dy,
(®g)sp and p are mutually absolutely continuous for all g € G, and the
Radon-Nikodym derivative

_ d(Pg)«pt
dp

(z)

is independent of x € X.

Definition We say that a Dirichlet metric measure space (X, d, p, €) ad-
mits a G-dilation structure if the action of G on (X, d, p, E) preserves the
Dirichlet space class and if there exists kK = K (g) such that

(1) E(foPg,hody) = J;E(f, h),
for any f,h € Deg.



IRREDUCIBILITY

A Borel set A € B (X) is Pg-invariant if P (1 4f) = 0 p-a.e. on A for
everyt > 0and f € L? (X, ).

The semigroup {Pt}t>0 is called irreducible if for any Pj-invariant set A
either  (A) = 0 or u (A°) = 0.

» Suppose a diffusion has an a.e. positive heat kernel.
Is this diffusion irreducible in each path-connected open set (killed
at exiting this open set)?

(As usual, no regularity of the boundary is assumed.)

... the intuitive answer is “yes’ ...



» |f a diffusion has a positive heat kernel, then is this diffusion
irreducible in each path-connected open set (killed at exiting this
open set)? ... there are examples with the negative answer.

Example [Reducible local Dirichlet form on a connected set] Let X = R?
with the Euclidean metric, and pt be the Lebesgue measure on X, .S be a non-
trivial straight line segment in R2. Consider the Dirichlet form corresponding
to the standard two-dimensional Brownian motion X3 killed at the first time
it reaches S. Then P is irreducible in R, but it is reducible in any disk U
which is separated by .S into two non-empty parts.

Example [Reducible non-local Dirichlet form on a connected set] Let
A:={(z,y) ER* X R?: |z —y| < 1land [z,y] NS = 0},
where [x, y] denotes a straight line interval connecting @ and y. Let

ef.9) = [ (F@) - FW) (9(@) - 9(v)) La(e,y) dady.
R2xR2
Then € is irreducible, but EW is reducible if W is again any disk which is
separated by S into two non-empty parts.



Proposition [lrreducibility of the semigroup] Assume that the heat kernel
pe(x,y) exists for all £ and all x,y € X and U is an open path-connected
set in X. The semigroup Ptu is irreducible if for any y € W and r small
enough and * € By (y) there exists tg = tg(x, y,r) such that for any
z € U and any s < t < ¢

pe(x,y) — ps(z,y) > 0.

Corollary Let (X, d, p) satisfy the chain condition, and W is path-connected,

_«a d _«a d
c1t B & (cz (wiy)> < pe(z,y) < c3 (t B+ 1) ¢ ((34 (wiy)>
VAC) I AC)

where ® is a positive decreasing function on [0, 00) with
lim r¢®(r) =0

r—00

then Ptu is irreducible.



FRACTALS (OR FRACTAFOLDS*)

» *Strichartz: A fractafold, a space that is locally modeled on a specified
fractal, 1s the fractal equivalent of a manifold.
» A “fractafold” is to a fractal what a manifold is to a Euclidean
half-space.
» There is no generally agreed upon definition of “fractal”, other than
"l know one when | see one”:

Motivation: Strichartz'89, Harmonic analysis as spectral theory of Laplacians



Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?
Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de ’Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study

the propagation of a scalar field on such a background and we show that for almost any initial
coonditione the renarmalization oronn eannatinne lead to an effective hichlv evmmetrice mattie at



F. Englert et al. / Metric space-time
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(8 + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin — to l-dimensional metrics. M, M,, M; denote unstable minkowskian

fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0;, 0, and 0; associated to 0-dimensional

geometries are located at the origin and at infinity on the (a, 8) coordinates axis. The six straight lines arc subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of
them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.



PRL 95, 171301 (2003)

PHYSICAL REVIEW LETTERS week ending

21 OCTOBER 2003

The Spectral Dimension of the Universe is Scale Dependent

J. Ambjgrn,"* J. Jurkiewicz,” and R. Loll**

'The Niels Bohr Instiute, Capenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University
Reymonta 4, PL 30-059 Krakow, Poland

*Institute for Theoretical Physics, Utrecht University, Lewvenlaan 4, NL-3584 CE Utrechs, The Netherlands
(Received 13 May 2003; published 20 October 200)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL: 10.1103/PhysRevLett.93.171301

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers n otherwise disparate approaches to
quantum gravity 1 that the microstructure of space and

time may provide a physical regulator for the ultraviolet
infinities enconntered in nerturhative anantum field theorv

PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

tral dimension, a diffeomorphism-invariant quantity ob-
tamned from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-

curacy, 1t 15 equal to four, in agreement with earlier mea-
snrements of the laroe=scale dimensionalitv hased on the



Fractal space-times under the microscope:
A Renormalization Group view on Monte Carlo data
[Martin Reuter, Frank Saueressig]:

Three scaling regimes of the effective space-times of asymptotically safe Quan-
tum Einstein Gravity (QEG):

(1) a classical regime ds = d, dy, = 2,

(2) a semi-classical regime ds = 2d/(2 + d), dyw = 2 + d,

(3) the UV-fixed point regime ds = d/2, dy = 4.

On the length scales covered by three-dimensional Monte Carlo simulations,
the resulting spectral dimension is in very good agreement with the data
and provides a natural explanation for the apparent puzzle between the short
distance behavior of the spectral dimension reported from Causal Dynami-
cal Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

e (Quasisymmetric uniformization and heat kernel estimates by Mathav Mu-
rugan: dy = dy which is consistent with ds = 2df/dw = 2



Timothy Budd, Radboud University Nijmegen

> Pl ) 002/1:11 n cc) ¢ E’ ] []

Causal dynamical triangulations

25,971 views Jan 26, 2013 Causal dynamical triangulation (CDT) is a lattice model
of quantum gravity. In two space-time dimensions (instead of the four we live in) it
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large



sub-Gaussian heat kernel estimates (sGHKE)

d

w

1 d(z,y)dw—1
(2) pt(2,y) ~ G—exp [ —e———
AR tdw—1

1
distance ~ (time)dw

df — Hausdorff dimension
% = dy = “walk dimension” (~y=diffusion index)
% = dg = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980'—)



In 2 In8
:dt:dmart<dtﬂzﬁ+1<dS<df:E<2<d’w

For Sierpinski carpets there exists a unique Dirichlet form and diffusion pro-
cess due to [Barlow and Bass 1998, 1999] (see also [Barlow-Bass-Kumagai-T

2010]).

dmart = 1 is a deep result of Kusuoka-Hino, see also Kajino-Murugan.



n 2
Here di g = n3 + 1 is the topological- Hausdorff dimension of the

n
Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension:
the topological Hausdorff dimension. Adv. Math. 2015]

Roughly speaking:
dipr := 1 + inf{Hausdorff dim. of boundaries of a base of open sets}



Open questions:
On the Sierpinski carpet,
—dw — d digr — 1 =dw — d
K %% £ dig 1% £ log 3

would give the best Holder exponent for harmonic functions?
| Numerical results: L.Rogers et all

log 2

Note that (dw — d ) —Holder continuity is known: Martin Barlow. Diffusions
on fractals. In Lectures on probability theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture Notes in
Math. Springer, 1998. Heat kernels and sets with fractal structure. In Heat kernels and analysis on manifolds,

graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11-40. Amer. Math. Soc.,
Providence, RI, 2003.



BV and weak Bakry-Emery non-negative curvature [P.Alonso-
Ruiz, F.Baudoin, L.Chen, L.Rogers, N.Shanmugalingam, A.T.]

7 # 7
Definition. BV (X) := KM 1(X) = B (X) with o} = 1
the L1-Besov critical exponent, and for f € BV (X)

Var(f) := llmmf// |f(y) f() du(y) du(x).
r=0" JJar A (B (a, )

Definition. We say that (X, i, €, F) satisfies the weak-Bakry-Emery non-
negative curvature condition wBE (k) if there exist a constant C' > 0 and
a parameter 0 < Kk < dyy such that for every t > 0, g € L°°(X, )
and ¢,y € X,

(3) |Prg(z) — Pig(y)| < Cd(m,y)m

e/ dw

191l Loo(x,p0)-



o If (X,d, ) satisfies wBE(k) with Kk = dTW then the form & admits

a carré du champ operator, which means that dy, = 2 by
[Kajino-Murugan 2019 Ann. Probab. 48, 2020]

® k < 1 because d(x,y) has to be essentially equivalent to a geodesic
metric [Corollary 1.8, Theorem 2.11 Mathav Murugan JFA 2020]

® For nested fractals, p.c.f. with sGHKE ()

@ For the Sierpinski carpet we conjectured

AT =X =df —dyg + 1

In 2

where dipr = - + 1 is the topological-Hausdorff dimension of the
n

Sierpinski carpet.
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