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Abstract:
▶ The lectures will begin with a review of the general functional
analysis framework, covering the Hille–Yosida theorem, the spectral
theory of self-adjoint operators as developed by von Neumann, the
theory of positive quadratic forms, Dirichlet forms and Markov
operators by Beurling and Deny, and the related theory of symmetric
Markov stochastic processes (Kolmogorov, Levy, Doob, Hunt, Dynkin).
▶ Next, I will discuss applications of the theory of ultra-contractive
semigroups, based on recent joint work with Carfagnini and Gordina,
following the work of E.B. Davis.
▶ After that, I will present recent progress in non-smooth Dirichlet,
Neumann, and Robin Boundary Value Problems, which are the
result of joint work with Hinz, Magoulès, and Rozanova-Pierrat.
▶ Another application of the general theory will deal with
non-smooth Wentzell Boundary Value Problems, a joint work with
Hinz, Lancia, and Vernole.
▶ If time permits, I will also discuss recent advancements in
non-smooth layer potentials and Riemann-Hilbert problems in a
joint work with Claret and Rozanova-Pierrat.



Lectures 1 and 2 – Functional Analysis
1. Yosida approximations

2. Spectral theory of self-adjoint semigroups by von Neumann

3. Hille–Yosida theorem (Feller–Miyadera–Phillips theorem)

4. Lumer–Phillips theorem

5. Positive quadratic forms, Dirichlet forms and Markov operators

6. Symmetric Markov stochastic processes

7. Ultra-contractive semigroups, following the work of E.B. Davis

8. Discrete spectrum for Dirichlet forms

9. Nash inequality

10. Small deviations

11. Mosco convergence, strong and norm resolvent convergence

12. Convergence of eigenvalues in fractal domains



1. Yosida approximations

Assume that the operator (A,DA) generates a C0-semigroup on a
Hilbert space H denoted by etA, t ⩾ 0. We assume that there is
β ⩾ 0 such that for all x ∈ DA

⟨Ax, x⟩ ⩽ −β|x|2H .

▶ Klaus-Jochen Engel and Rainer Nagel, One-parameter
semigroups for linear evolution equations, Graduate Texts in
Mathematics, vol. 194, Springer, 2000.

▶ Haim Brézis, Opérateurs maximaux monotones et semi-groupes
de contractions dans les espaces de Hilbert, North-Holland
Math. Studies, No. 5. Notas de Matemática (50). Elsevier, 1973.

▶ Haim Brezis, Functional analysis, Sobolev spaces and partial
differential equations, Universitext, Springer, 2011.



Semigroups
If X is a Banach space, a one-parameter semigroup of operators on
X is a family of operators indexed on the non-negative real numbers
{T (t)}t∈[0,∞) such that

T (0) = I, T (s + t) = T (s) ◦ T (t), ∀t, s ≥ 0.

The semigroup is said to be strongly continuous, also called a (C0)
semigroup, if and only if the mapping t 7→ T (t)x is norm-continuous
for all x ∈ X , where t ∈ [0,∞).

The infinitesimal generator of a one-parameter semigroup T is an
operator A defined on a possibly proper subspace of X as follows:

lim
h→0+

h−1
(

T (h)x − x
)

:= Ax

The domain of A is the set of x ∈ X such that the limit exists.

In other words, Ax is the right-derivative at 0 of the function
t 7→ T (t)x. The infinitesimal generator of a strongly continuous
one-parameter semigroup is a closed linear operator defined on a
dense linear subspace of X .



Let ρ (A) be the resolvent set, then the resolvent of A is defined as

Rλ (A) := (λI − A)−1
, λ ∈ ρ (A) ∈ B (H) ,

Rλ (A) : H −→ DA.

For λ > 0 we have ∥Rλ (A) ∥ ⩽ 1/λ. In addition,

λRλ (A) x −−−−→
λ→+∞

x, x ∈ H. (1)

Note that ARλ (A) x = Rλ (A)Ax, x ∈ DA.
The Yosida approximations to A are defined by

Aαx := 1
α

AR 1
α
(A) x, x ∈ H. (2)



The Yosida approximations Aα to A satisfy the following properties,
see [Proposition 7.2, Brezis 2011], where

Jα := (I − αA)−1, (3)

Jα ∈ B (H), ∥Jα∥ ⩽ 1.

Aαx −−−→
α→0

Ax, x ∈ DA,

|Aαx|H ⩽ |Ax|H , x ∈ DA, (4)
Aαx = JαAx, x ∈ DA,

Aα ∈ B (H) ,

∥Aα∥ ⩽ 1
α
,

Aα = AJα = 1
α
(Jα − I).



*** Proposition: ∥Jα∥ ⩽ 1/(1 + αβ) and for all x ∈ H

⟨Aαx, x⟩ ⩽ − β

1 + αβ
|x|2H

Proof Let x ∈ H and y := Jαx , that is x = y − αAy . Then

|x|H · |y |H ⩾ ⟨x, y⟩ = ⟨y − αAy , y⟩ ⩾ (1 + αβ)|y |2H ,

which implies |x| ⩾ (1 + αβ)|y |. To prove the second inequality,
note that

⟨−Aαx, x⟩ = ⟨−Ay , y − αAy⟩ ⩾ β|y |2H + α|Ay |2H

= β|y |2H +
1
α
|x − y |2H ⩾

β|x|2H
1 + αβ

,

where the last inequality is obtained by minimization over all y ∈ H.

*** Note that the estimates in this Proposition are best possible.
M. Gordina, M. Röckner, A. Teplyaev, Singular perturbations of Ornstein-Uhlenbeck
processes: integral estimates and Girsanov densities,
Probability Theory and Related Fields 178(3), 861-891 (2020)



Yosida approximations to non-linear time-dependent
m-dissipative maps

Denote by 2H the power set of the Hilbert space H. Let
F (t, ·) : [0,∞) × DF → 2H be a family of maps such that DF is a
non-empty Borel set in H. Furthermore, F (t, ·) is an m-dissipative
map, that is, for any x1, x2 ∈ DF

⟨y1−y2, x1−x2⟩ ⩽ 0, for any y1 ∈ F (t, x1) , y2 ∈ F (t, x2) , t ∈ [0,∞)

and for any α > 0 and t ∈ [0,∞)

Range (αI − F (t, ·)) := {αx − y : y ∈ F (t, x) , x ∈ DF} = H.



Fix t ∈ [0,∞) and set F := F (t, ·). Then for any α > 0 we define

Fα :=
1
α

(Jα (x) − x) , x ∈ H, (5)

where
Jα (x) := (I − αF )−1 (x) , I (x) = x,

which is a nonlinear generalization of (3). Then each Fα is
single-valued, dissipative, Lipschitz continuous with Lipschitz
constant less than 2

α
and satisfies

lim
α→0

Fα (x) = F0 (x) , x ∈ DF , (6)

|Fα (x) |H ⩽ |F0 (x) |H , x ∈ DF . (7)

It is clear from the last inequality that for each x0 ∈ DF

|Fα(t, x)|H ≤ |F0(t, x0)|H +
2
α
|x|H ≤ a(|x0|H) +

2
α
|x|H , x ∈ H.

(8)



2. Spectral theory of self-adjoint semigroups by von
Neumann

If A is a self-adjoint operator on a Hilbert space then

A =

∫

R
λdEA(λ)

for the unique orthogonal projection-valued measure EA(·).

Moreover, for any measurable function f :→, there is a well defined
self-adjoint operator

f (A) =

∫

R
f (λ)dEA(λ)



Proof of the Spectral Theorem

Cayley transform:
U = (A − iI)(A + iI)−1

A = i(U + I)(U − I)−1

Note that V is a unitary operator: U∗ = U−1

Use Gelfand transform on cyclic subspaces of A or U

Birman M. Sh., Solomjak M. Z.
Spectral theory of self-adjoint operators in Hilbert space

Reed M., Simon B. I: Functional analysis

Rudin W., Functional analysis



The Hille–Yosida theorem (general case)

Let A be a linear operator defined on a linear subspace D(A) of the
Banach space X , ω ∈ R, and M > 0. Then A generates a strongly
continuous semigroup T that satisfies

∥T (t)∥ ≤ Meωt

if and only if:
A is closed and D(A) is dense in X , every real λ > ω belongs to the
resolvent set of A and for such λ and for all positive integers n,

∥(λI − A)−n∥ ≤ M
(λ − ω)n

.

In the special case of contraction semigroups (M = 1 and ω = 0)
only the case n = 1 has to be checked:



The Hille–Yosida theorem (contraction semigroups)

Let A be a linear operator defined on a linear subspace D(A) of the
Banach space X . Then A generates a strongly continuous semigroup
T that satisfies

∥T (t)∥ ⩽ 1

if and only if:
A is closed and D(A) is dense in X , every real λ > 0 belongs to the
resolvent set of A and for such λ,

∥(λI − A)−1∥ ⩽
1
λ
.



4. Lumer–Phillips theorem

Let A be a linear operator defined on a linear subspace D(A) of
the Banach space X . Then A generates a contraction semigroup if
and only if D(A) is dense in X , A is dissipative

∥(λI − A)x∥ ≥ λ∥x∥

and A − λ0I is surjective for some λ0 > 0, where I denotes
the identity operator. An operator satisfying the last two conditions is
called maximally dissipative.

*** Note: the conditions that D(A) is dense and that A is closed can
be dropped if X is a reflexive Banach space. Moreover, in that case
A generates a contraction semigroup if and only if A is closed and
both A and its adjoint operator A∗ are dissipative.



5. Positive quadratic forms, Dirichlet forms and
Markov operators

A Dirichlet form (E,F) is a symmetric, bilinear and positive definite
real valued form E on a subspace F that is dense in a real L2-space
L2(X ,X , µ) over a σ-finite measure space (X ,X , µ) such that
▶ the space F , together with the norm

f 7→ (E(f ) + ∥f∥2
L2(X ,X ,µ))

1/2, is a Hilbert space (the ’Dirichlet
space’) and

▶ for any f ∈ F we have (f ∧ 1) ∨ 0 ∈ F and
E(f ) ≤ E((f ∧ 1) ∨ 0).

Here E(f ) := E(f , f ).
There is a one-to-one correspondence of Dirichlet forms and
non-positive definite self-adjoint operators on L2(X ,X , µ) satisfying
a certain Markov property.
The self-adjoint operator (L, domL) uniquely associated with (E,F)
(and referred to as its generator) satisfies

E(f , g) = −⟨Lf , g⟩L2(X ,X ,µ) , f ∈ domL, g ∈ F ,

and is uniquely determined by this formula.



6. Symmetric Markov stochastic processes

By a theorem of Kolmororov (Foundations of the Theory of
Probability, 1933) any self-adjoint positivity preserving semigroup
L2(X ,X , µ) corresponds to an essentially unique family of symmetric
Markov processes Xt .

The semigroup property

P(t + s) = P(t)P(s)

is called the Chapman–Kolmogorov equation with

P(t)f (x) = Ex(f (Xt))



Textbooks on symmetric Markov processes,
semigroups and Dirichlet forms

Ethier SN, Kurtz TG. Markov processes: characterization and
convergence. John Wiley & Sons 1986, 2nd Edition 2005

Bouleau N, Hirsch F. Dirichlet forms and analysis on Wiener space.
Walter de Gruyter 1991

Ma ZM, Röckner M. Introduction to the theory of (non-symmetric)
Dirichlet forms. Springer 1992

Fukushima M, Oshima Y, Takeda M. Dirichlet forms and symmetric
Markov processes. Walter de Gruyter1994, 2nd Edtion 2010

Chen Z, Fukushima M. Symmetric Markov processes, time change,
and boundary theory (LMS-35). Princeton University Press 2011











Theorem

Let {Pt}t⩾0 be a strongly continuous semigroup of symmetric
operators on a Hilbert space H with the infinitesimal generator L,
then the following statements are equivalent.

1. Pt is compact for all t > 0;
2. Pt0 is compact for some t0 > 0;
3. L has a discrete spectrum, that is, it has a pure point spectrum

with isolated eigenvalues of finite multiplicity.

Carfagnini M, Gordina M, Teplyaev A. Dirichlet metric measure spaces: spectrum,
irreducibility, and small deviations, arXiv:2409.07425



7. Ultra-contractive semigroups, following the work of
E.B. Davis

Let Pt be a Markov semigroup on L2 (X , µ), where µ is a σ-finite
measure on a countably generated σ-algebra. We say that Pt is
ultracontractive if

∥Pt f∥L∞ ⩽ ct∥f∥L2 , (9)

where the corresponding norm is denoted by ∥Pt f∥2→∞ ⩽ ct .

Davies EB. Heat kernels and spectral theory. Cambridge University
Press 1989:

Ultracontractivity is equivalent to the existence of an integral (heat)
kernel for the semigroup Pt satisfying

0 ⩽ pt(x, y) ⩽ at < ∞ (10)

almost everywhere on X × X for some at ⩾ 0.



Eigenfunction expansion of the Dirichlet heat kernel

Let {Pt}t⩾0 be a strongly continuous contraction semigroup on
L2(X , µ), and let U be a measurable set in X with 0 < µ(U) < ∞.
If (10) is satisfied, then the series

pU
t (x, y) =

∞∑

n=1

e−λntφn(x)φn(y)

converges uniformly on U × U × [ε,∞) for any ε > 0. Moreover,

Px (τU > t) =
∞∑

n=1

e−λntφn(x)
∫

U
φn(y)dµ(y)

for any x, y ∈ U , and t > 0.



8. Discrete spectrum for Dirichlet forms
Let (E,DE) be a regular Dirichlet form with associated strongly
continuous contraction semigroup {Pt}t⩾0 on L2(X , µ). . Assume
that pt(x, y) exists for all t and for µ-a.e. x, y ∈ X .

Theorem (Carfagnini, Gordina, Teplyaev)
Let U be an open bounded subset of X , and PU

t be the semigroup
associated to (E,DE) with the infinitesimal generator AU , where we
impose zero boundary conditions outside of U .
▶ If µ(U) < ∞ then the spectrum of AU is discrete and the

associated heat kernel pU
t (x, y) has the usual eigenfunction

expansion.
▶ If there exists a tU > 0 such that

MU (tU) = ess sup
(x,y)∈U×U

pU
tU (x, y) <

1
µ(U)2

, (11)

then λ1 > 0.

Note that pU
t (x, y) ⩽ pt(x, y).



9. Nash inequality
We say that the Dirichlet from (E,DE) on L2 (X , µ) satisfies a Nash
inequality with the parameter ν if there is a C > 0 such that

∥f∥2+ 4
ν

L2(X ,µ) ⩽ CE(f , f )∥f∥
4
ν

L1(X ,µ) for all f ∈ DE . (12)

Carlen EA, Kusuoka S, Stroock DW. Upper bounds for symmetric
Markov transition functions. InAnnales de l’IHP Probabilités et
statistiques 1987:

(12) is equivalent to the L1 → L∞ ultracontractivity of the heat
semigroup with the specific power function depending on the
parameter ν

∥Pt f∥L∞(X ,µ) ⩽ C t−
ν
2 ∥f∥L1(X ,µ),

for all f ∈ L1(X , µ) and t > 0, or equivalently

ess sup
(x,y)∈X×X

pt (x, y) ⩽ Ct−
ν
2 ,



10. Small deviations

Theorem (Carfagnini, Gordina, Teplyaev)
Let x ∈ X and assume that PB1(x)

t is irreducible. Assume that the
heat kernel pB1(x)

t (x, y) exists for all t and for all x, y ∈ X and that

pt(x, y) ⩽ c t−
α
β

for any t, x , and y . Moreover, assume that there exists a t0 such that
pB1(x)

t0
(x, y) is continuous for x, y ∈ X . If X x

t is self-similar then

lim
ε→0

eλ1
t

εβ Px

(
sup

0⩽s⩽t
d(Xs, x) < ε

)
= c1φ1(x),

where λ1 > 0 is the spectral gap of AB1(x) with zero boundary
conditions outside of the unit ball B1(x), and φ1 is the corresponding
positive eigenfunction.



11. Mosco convergence, strong and norm resolvent
convergence

▶ Mosco, Umberto Convergence of convex sets and of solutions of
variational inequalities. Advances in Math. 3 (1969), 510–585.

▶ Mosco, Umberto Composite media and asymptotic Dirichlet
forms. J. Funct. Anal. 123 (1994), no. 2, 368–421.

Kato, Tosio
Perturbation theory for linear operators. Springer-Verlag 1966.

[Reed-Simon 1972]: For non-negative closed quadratic forms,
▶ Mosco convergence is equivalent to the strong resolvent

convergence,
▶ but is weaker than the norm resolvent convergence.



A sequence (E(n))∞n=1 of (possibly extended real valued) quadratic
forms E(n) on L2(X ,X , µ) converges to a quadratic form E on
L2(X ,X , µ) in the sense of Mosco if

(i) for any sequence (fn)∞n=1 ⊂ L2(X ,X , µ) converging to some f
weakly in L2(X ,X , µ) we have

E(f ) ≤ lim inf
n

E(n)(fn)

and
(ii) for any f ∈ L2(X ,X , µ) there exists a sequence (fn)∞n=1

converging to f strongly in L2(X ,X , µ) and such that

lim sup
n

E(n)(fn) ≤ E(f ).



Theorem

Any separable Dirichlet form (E,F) can be approximated in the
Mosco sense by a sequence of essentially discrete Dirichlet forms
(essentially isomorphic to that on finite weighted graphs) and the
corresponding generators approximate the generator of (E,F) in the
strong resolvent sense.

M. Hinz, A. Teplyaev, Closability, regularity, and approximation by
graphs for separable bilinear forms. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 441 (Veroyatnost i
Statistika. 22):299-317, 2015. Springer: J. Math. Sci. (2016) 219
807–820 doi:10.1007/s10958-016-3149-7 arXiv:1511.08499



Mosco convergence does not imply convergence of
the spectrum

M-lim
n→∞

En = F or En
M−−−→

n→∞
F .

▶ xn ∈ L2 converging weakly to x ∈ L2,
lim inf
n→∞

En(xn) ≥ F (x);

▶ for each x ∈ L2 there exists an approximating sequence of
elements xn ∈ L2, converging strongly to x , such that
lim sup

n→∞
En(xn) ≤ F (x).

Example:
L2 := ℓ2(Z+)

En((xk )) :=
∑

k⩾n |xk |2 M−−−→
n→∞

E = 0
σ(En) = {0, 1} ̸= {0} = σ(E)



12. Convergence of eigenvalues in fractal domains
Theorem ( Hinz, Rozanova-Pierrat, T. )
Let n, D, α, γ, ε, d , (Ωm)m and (µm)m be a a sequence of
admissible domains. Suppose that limm Ωm = Ω in the Hausdorff
sense and in the sense of characteristic functions and limm µm = µ
weakly. There is a sequence (mk )∞k=1 with mk ↑ +∞ such that the
following hold.

(i) We have limk→∞ PΩmk
◦ Ĝ

Ωmk ,µmk ,∗
α,γ = PΩ ◦ ĜΩ,µ,∗

α,γ in operator
norm.

(ii) If 0 < a < b are in the resolvent set of −LΩ,µ,∗
γ , then

limk→∞ π(a,b)(Ωmk , µmk , ∗) = π(a,b)(Ω, µ, ∗) in operator norm.

(iii) The spectra of the operators −LΩmk ,µmk ,∗
γ converge to the

spectrum of −LΩ,µ,∗
γ in the Hausdorff sense. The eigenvalues

λn(Ω, µ, ∗) of the operator −LΩ,µ,∗
γ are exactly the limits as

k → ∞ of sequences of the eigenvalues of the operators
−LΩmk ,µmk ,∗

γ ,

λn(Ω, µ, ∗) = lim
k→∞

λn(Ωmk , µmk , ∗).



Ω+
k

Ω−
k

∂Ω

Figure 1: Dyadic approximations of a Von Koch snowflake (∂Ω, in blue) in R2. The interior
approximation Ω−

k lies inside the green dashed line; the exterior approximation Ω+
k lies

outside the red dotted line.

Proposition 3.3. Let Ω be an arbitrary bounded domain of Rn such that Ω
c

is connected
too. Then Ω−

k ⊔ Ω+
k −→ Rn\∂Ω.

Proof. From Remark 3.2, let k0 ∈ N be such that (Ω−
k )k≥k0

is non-decreasing. Then it holds:

Ω−
k −−−−→

k→∞
Ω−

∞ :=
⋃

k≥k0

Ω−
k ⊂ Ω.

Let x ∈ Ω. Then d(x, ∂Ω) > 0. In the same way as for (5), there exists k̃ ≥ k0 so that:

{x} ∪ Ω−
k0

⊂ Ω−
k̃
.

Hence x ∈ Ω−
∞, and Ω−

∞ = Ω.
To show Ω+

k → Ω
c
, we proceed in the same way considering x ∈ Ω

c
a path on Ω

c
linking

x and a large square containing Ω.

Remark 3.4. Lemma 3.1, Remark 3.2 and Proposition 3.3 can easily be generalized in the
case of an arbitrary (potentially unbounded) open set Ω such that Ω and Ω

c
have a finite

number of connected components.

3.1 Spaces of functions on Rn

Let us define the following spaces:

H1
∂Ω(Rn) :=

{
u ∈ L2(Rn)

∣∣ ∇u|Rn\∂Ω ∈ L2(Rn\∂Ω)n
}
,

H1
∆Ωk

(Rn) :=
{
u ∈ L2(Rn)

∣∣∣ ∇u|Ω−
k ⊔Ω+

k
∈ L2(Ω−

k ⊔ Ω+
k )

n
}
.

Those spaces consist of functions L2 on the whole space, with gradient L2 away from the
boundary. In particular, they do not contain distributions which present a Dirac on the
boundary.

From Proposition 3.3, it appears:

H1
∆Ωk

(Rn) ↘
k→∞

H1
∂Ω(Rn),

4



Convergence of the re-normalized eigenvalues of
small balls in SU(2) to corresponding eigenvalues in
the unit ball of H

Here H is the Heisenberg group, which is a re-scaled limit of SU(2)
near the identity.

Theorem (Carfagnini, Gordina, T.)
Let 0 < λH

1 < λH
2 ⩽ λH

3 ⩽ ... be the Dirichlet eigenvalues in the unit
ball BH

1 of H, counted with multiplicity. Let 0 < λr
1 < λr

2 ⩽ λr
3 ⩽ ... be

the Dirichlet eigenvalues in the r -ball BSU(2)
r of SU(2), counted with

multiplicity. Then for each n ⩾ 1 we have

lim
r→0

r2λr
n = λH

n .



SU(2) ∼ S3

H ∼ R3

1
r SU(2) ∼ 1

rS
3

H-ball

1



SU(2) ∼ S3

H ∼ R3

1
r SU(2) ∼ 1

rS
3

H-ball

1

the Heisenberg ball [picture made by Nate Eldredge]



Convergence of the Dirichlet heat kernels

Let pBH
1

t (·, ·) be the Dirichlet heat kernel in the unit ball BH
1 of H, and

pBSU(2)
r

t (·, ·) be the Dirichlet heat kernel in the r -ball BSU(2)
r of SU(2),

where the balls are centered at the identity of the groups.

Theorem (Carfagnini, Gordina, T.)
For each t > 0

lim
r→0

r4 pBSU(2)
r

r2t

(
Φ−1 (δHr (x)

)
,Φ−1 (δHr (x)

))
= pBH

1
t (x, y).

uniformly for x, y ∈ BH
1 .



Local convergence of stochastic flows
Let

gBSU(2)
r

s :=

{
gs s < τBSU(2)

r

∂ s ⩾ τBSU(2)
r

(13)

where gs denotes a hypoelliptic Brownian motion on SU(2), and

τBSU(2)
r

:= inf
{

s > 0, gs /∈ BSU(2)
r

}
. (14)

Similarly, let

X BH
r

s :=

{
Xs s < τBH

r

∂ s ⩾ τBH
r

(15)

where Xs denotes a hypoelliptic Brownian motion on H, and

τBH
r
:= inf

{
s > 0, Xs /∈ BH

r

}
. (16)



Theorem (Carfagnini, Gordina, T.)
For any 0 < r < 1

7 r1/7 there is a continuous stochastic process Y r
s in

H such that

Y r
s :=: δH1/rΦ

(
gBSU(2)

3r
r2s

)

in the sense of conditional probability distributions on the event
A3r := {s < τBH

3r
} and

lim
r→0

1A3r sup
0⩽s⩽T

|Y r
s − Xs| = 0

in probability.
We use Theorem 3.3.1, page 76, in Kunita 1986 Lectures on
stochastic flows and applications, Tata Institute of Fundamental
Research Lectures on Mathematics and Physics.



Thank you for your attention!
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