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Abstract:

Dirichlet form analysis provides powerful tools for studying diffusions
and spectral analysis in non-smooth settings, with Mosco
convergence being a standard approach for examining
approximations. However, Mosco convergence alone may not suffice
to understand finer properties, such as the convergence of
eigenvalues and small deviations of diffusion processes. This talk will
present recent results that strengthen the Mosco convergence of
Dirichlet forms in non-smooth spaces, including fractals, domains with
fractal boundaries, and sub-Riemannian spaces. The presentation
includes joint work with Michael Hinz, Anna Rozanova-Pierrat,
Gabriel Claret, Luke Rogers, Marco Carfagnini, and Masha Gordina.
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Mosco convergence, strong and norm resolvent
convergence

» Mosco, Umberto Convergence of convex sets and of solutions of
variational inequalities. Advances in Math. 3 (1969), 510-585.

» Mosco, Umberto Composite media and asymptotic Dirichlet
forms. J. Funct. Anal. 123 (1994), no. 2, 368—421.

Kato, Tosio
Perturbation theory for linear operators. Springer-Verlag 1966.

[Reed-Simon 1972]: For non-negative closed quadratic forms,

» Mosco convergence is equivalent to the strong resolvent
convergence,

> but is weaker than the norm resolvent convergence.



Mosco convergence does not imply convergence of
the spectrum

M-lim E,, = F or E,—>F.
n— oo n—oo

» x, € L? converging weakly to x € L2,
Iinnlinf En(xn) > F(x);

» for each x € L2 there exists an approximating sequence of
elements x,, € L2, converging strongly to x, such that
limsup Ep(xn) < F(x).

n—oo
Example:
L2 := ¢*(Z,)

En((Xk)) 1= Yo [Xel*———E =0

o(En) = {0,1} # {0} = o(E)



Introduction and motivation, analysis on “fractafolds™

» *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

» A “fractafold” is to a fractal what
a manifold is to a Euclidean half-space.

This is a part of the broader program to develop probabilistic, spectral
and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



What is the first appearance of fractals is science?

In a sense, the simplest possible fractal appears in the famous Zeno’s
paradoxes: Zeno of Elea (c. 495 — ¢. 430 BC) "Achilles and the
Tortoise"
1. Achilles runs to the tortoise’s starting point while the tortoise
walks forward.
2. Achilles advances to where the tortoise was at the end of Step 1
while the tortoise goes yet further.
3. Achilles advances to where the tortoise was at the end of Step 2
while the tortoise goes yet further.
Etc.
Apparently, Achilles never overtakes the tortoise, since however
many steps he completes, the tortoise remains ahead of him.



Dichotomy paradox: that which is in locomotion must arrive at the
half-way stage before it arrives at the goal. In a race, the quickest
runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must
always hold a lead. [Aristotle, Physics VI:9, 239b10, 239b15]

*k%k

In 1821, Augustin-Louis Cauchy proved that, for —1 < x < 1,

a
at+ax+ax®+ax®+..= T S(a, x)

This is a weakly-self-similar sum satisfying a re-normalization
“fixed-point” functional equation

S(a,x) =a+ x- S(a, x)






MATH EMATICS AND GEOMETRY: Decomposition of pyramids
Red pencil, pen and ink, ¢. 1515

The sheet shows several diagrams of pyramids broken down intosmaller

ones. Thecaption above the major pyramid drawing states that each
pyramidwith a square base 'is resolved into eight pyramids of igures

similar toitswhole" The same concept is reiterated by the smaller diagrom
abovethe larger pyramid. Below, thereis anothersmallsketchwitha
captionexplaining how tosquarea pyramid. Underthe base ofthe main
pyramid thereis a note that alludes to @ German craftsman, whie

immediately to the side there are grids

that could be exercisesinperspective.






Cantor, Sierpinski, Julia, Mandelbrot

» How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension (Mandelbrot 1967).
The coastline paradox: the measured length of a stretch of coastline
depends on the scale of measurement.

Fractal titanium oxide under inverse 10-ns laser deposition in air and
water. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, Z. Zhai
Applied Physics A volume 123, Article number: 253 (2017)
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Fig. 5 Surface morphology of titanium with the laser energy of b shows a typical fractal structure unit, and inset ¢ is size distribution
86 mJ, scanning speed of 0.01 mm/s, and scan length of 10 mm. Inset histograms of 50 fractal structure units
a depicts the surface morphology beyond laser irradiation zone. Inset



Wave absorption: numerical shape optimization

» F. Magoules, T.P. Kieu Nguyen, P. Omnes, A. Rozanova-Pierrat,
Optimal absorption of acoustic waves by a boundary.
SIAM J. Control Optimization 59 (2021)
+ more numerical results
» C. Bardos, D. Grebenkov, A. Rozanova-Pierrat,
Short-time heat diffusion in compact domains with discontinuous
transmission boundary conditions.
Math. Mod. Meth. Appl. Sci. 26 (2016)
> A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval,
Faster diffusion across an irregular boundary.
Phys. Rev. Lett. 108 (2012)
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Wave absorption: theoretical shape optimization

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Non-Lipschitz uniform
domain shape optimization in linear acoustics.
SIAM J. Control Optim. 59 (2021)

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Boundary value
problems on non-Lipschitz uniform domains: Stability,
compactness and the existence of optimal shapes.
Asymptotic Analysis (2023)



Equations used in architecture

» M. Hinz, F. Magoulés, A. Rozanova-Pierrat, M. Rynkovskaya, A.
Teplyaev, On the existence of optimal shapes in architecture.
Applied Mathematical Modelling 94 (2021)

Given a domain  C RN and a vector field v e W'2(Q)N we denote
the symmetric part of its gradient by

e(v) = % (Vv + (Vv)).

Let A € L°°(Q, M$(c, B)) and write o(v) = Ae(v), v e Wh2(Q)N.
We are interested in solutions u € W'2(Q)N of BVP:

—divo(u) =f inQ,
u =0 onrly, (1)
o(u-n =g onTlye.



Wentzell Boundary conditions

> A. Wentzell. On boundary conditions for multi-dimensional
diffusion processes. Theor. Probability Appl. (1959)

E(u) = /Q IV ul2dx + Eoa(u)



Theoretical study

» M. R. Lancia, P. Vernole,
Venttsel’ problems in fractal domains
J. Evol. Equ. 14 (2014), no. 3, 681-712.

» M. Hinz, M. R. Lancia, A. Teplyaev, P. Vernole, Fractal snowflake
domain diffusion with boundary and interior drifts, J. Math. Anal.
Appl. 457 (2018)

E(u) = /Q IV uldx + Eoa(u)



Discrete approximations

» M. Gabbard, C. Lima, G. Mograby, L. G. Rogers, A. Teplyaeyv,
Discretization of the Koch Snowflake Domain with Boundary
and Interior Energies, SEMA SIMAI Springer Series ICIAM2019
Fractals in engineering: Theoretical aspects and Numerical
approximations (2021)

E(u) = /Q IV uldx + Eoa(u)
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FIGURE 5. Contour Plots of the Ei ors of Ly, corr ding to ei lues A: (a) 4th

eigenvector, A = 48.1. (b) 5th eigenvector, A = 48.1. (c) 6th eigenvector, A = 85.1. (d) 8th
eigenvector A = 125.4. (e) 1153rd eigenvector A = 49965.7. (f) 1157th eigenvector A = 50156.6.
(g) 1161st eigenvector, A = 50188.8 and (h) 1162nd cigenvector, A = 50188.83. Blue regions
indicate the values of an eigenvector in (—¢,€), red regions in (e,00) and green regions in
(=00, =€), where ¢ = 0.01. (Level 4 graph approximation)
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FIGURE 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and L,
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and L,, (blue) (Level 4 graph approximation).



FIGURE 7. (a) The 5,028th eigenvector of L,,, A = 118038.02. (b) The last Dirichlet eigenvec-
tor, A = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors
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FIGURE 8. The last L, eigenvector, A = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).
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FIGURE 9. L, eigenvectors localization with eigenvalues A:
118048.66. (b) 5031th eigenvector, A = 119678.65. (c) 5032th eigenvector, A = 119678.65.
(d) 5033th eigenvector, A = 121460.72. (e) 5100th eigenvector, A = 185367.41. (f) 5200th
eigenvector, A = 291364.38. (g) 5300th eigenvector, A = 392584.97. (h) 5557th eigenvector,
A = 524999.69. Blue regions indicate the values of an eigenvector in (—¢,€), red regions in
(€,50) and green regions in (—oc, —¢), where ¢ = 0.01 (Level 4 graph approximation).

(a) 5030th eigenvector, A\ =
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1. Convergence of eigenvalues in fractal domains
Theorem ( Hinz, Rozanova-Pierrat, T. )
Letn, D, o, v, ¢, d, (2m)m and (um)m be a a sequence of
admissible domains. Suppose that limpy, Q,;, = Q in the Hausdorff
sense and in the sense of characteristic functions and limp, pm = p

weakly. There is a sequence (mg)32, with my 1 oo such that the
following hold.

(i) We have limk_,o Pq,, © Gamotmo* — pg o G2 in operator
norm.
(i) If0 < a < b are in the resolvent set of —L#*, then
limg oo T(a,0) (Rmycs mys ¥) = T(a,0)(2, p, *) in operator norm.
(iiiy The spectra of the operators —LS’"“’“ ™™ converge to the
spectrum of —£3’“’* in the Hausdorff sense. The eigenvalues

An(R, 1, *) of the operator — L2#* are exactly the limits as

k — oo of sequences of the eigenvalues of the operators
Qinye sy o
_c'y 3 'k

H

)\n(Qv oy *) = kimoo )\n(kaa Hmyy *)' (2)






2. Discrete spectrum for Dirichlet forms

Theorem (Carfagnini, Gordina, T.)

LetU be an open bounded subset of X, and P}‘ be the semigroup
associated to (£, D¢) with the infinitesimal generator Ay,. Assume

that pi(x, y) exists for all t and for m-a.e. x,y € X. If there exists a
t,, > 0 such that

y) = esss (X Y) < ——, 3
M, (1) (x’y)e;supr( y) m()? @)

then the spectrum of — Ay, is discrete and Ay > 0.



3. Small deviations

Theorem (Carfagnini, Gordina, T.)

Let {P:}+>0 be a strongly continuous contraction semigroup on
L2(x, m). Let x € X and assume that Pf‘ ) js irreducible. Assume

that the heat kernel pi(x, y) exists for all t and for all x,y € X and
that

pi(x,y) <ct 5

for any t, x, and y. Moreover, assume that there exists a ty such that
Py (X, y) is continuous for x,y € X. If X[ is self-similar then

e—0 0<s<t

lim eer pX ( sup d(Xs, x) < s) = c1p1(X), (4)

where A1 > 0 is the spectral gap of A restricted to the unit ball B1(x),
and 1 is the corresponding positive eigenfunction.



4. Convergence of the re-normalized eigenvalues of
small balls in SU(2) to corresponding eigenvalues in
the unit ball of H

Here H is the Heisenberg group, which is a re-scaled limit of SU(2)
near the identity.
Theorem (Carfagnini, Gordina, T.)

Let0 < Al < AY < Af < ... be the Dirichlet eigenvalues in the unit
ball B§' of H, counted with multiplicity. Let0 < Aj < X§ < A < ... be

the Dirichlet eigenvalues in the r-ball B;'® of SU(2), counted with
multiplicity. Then for each n > 1 we have

lim rAL = 2E, (5)

r—0



SU(2) ~ §3

1 13

H-ball H ~ R3
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the Heisenberg ball [picture made by Nate Eldredge]



5. Convergence of the Dirichlet heat kernels

Let pfgﬁ(-, -) be the Dirichlet heat kernel in the unit ball B! of H, and
SU(2

p% (., ) be the Dirichlet heat kernel in the r-ball BSY® of SU(2),

where the balls are centered at the identity of the groups.

Theorem (Carfagnini, Gordina, T.)

Foreacht >0

tim r pf,” (0 (8(x)) , 0 (31(x))) = P (X, ). (6)

uniformly for x,y € B



6. Local convergence of stochastic flows
Let

S

gB;su(z) — gs s< TBfU(Z)
0 s> Tgsu@)
r

where gs denotes a hypoelliptic Brownian motion on SU(2), and

Tgsu@ = inf {S >0, gs ¢ BfU(Z)} . (8)
Similarly, let
X2 = {)a( P ©
) 2 TBLrHl

where Xs denotes a hypoelliptic Brownian motion on H, and

gz :=inf{§ >0, Xs ¢ B}'}. (10)



Theorem (Carfagnini, Gordina, T.)

Forany0 < r < %r1 /7 there is a continuous stochastic process Y{ in
H such that

Cimi o o (B
Yg i=:10,,,® (grzs’ ) (11)

in the sense of conditional probability distributions on the event
Az = {s < TBEIr} and

. r _
rll_r:10 1a,, ozlsu\) |Ys — Xs| =0 (12)
in probability.

We use Theorem 3.3.1, page 76, in Kunita 1986 Lectures on

stochastic flows and applications, Tata Institute of Fundamental
Research Lectures on Mathematics and Physics.



New Frontiers: Layer potentials
o
u(x) = [ p(y) 5 Px.y)do(y)

vix) = Gxf= [ gx.ydu(y)



Riemann-Hilbert and Poincare variational problems

Find a function in C, unanlytic outside of a curve, with
prescribed values and jumps on the curve.

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Calssical applications:
> Integrable models, inverse scattering or inverse spectral problem
» the inverse monodromy problem for Painlevé equations
» Orthogonal polynomials, Random matrices
» Combinatorial probability
» Algebraic geometry, Donaldson—Thomas theory



Hilbert transform

u(r) ,
(f—‘r)

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

H()(t) = Lp.v /

Closely connected to the Riemann-Hilbert and Poincare variational
problems and is extensively used in analysis and in sygnal
processing.



Maxwell and other vector equations

We develop new mathematical tools in the vector case in order to
study and solve Maxwell’s equations in non-Lipschitz, possibly fractal
domains. To that extent, we would like to show here one use of those
tools with the time-harmonic Maxwell problem completed with a
homogeneous Dirichlet boundary condition, which becomes with our
notations:

curl(p='curlE) — w?cE=f onQ
Trr(E)=0 on 9N

where f € L?(R2) and we look for E € H(curl, Q).
This problem is equivalent to the following variational formulation:
Find E € Hy(curl, Q) such thatVF € Hy(curl, Q2):

(= 'curl E, curl F) — w?(¢E, F) = (,F).

Research in progress: Anna Rozanova-Pierrat (CentraleSupélec),
Patrick Ciarlet (ENSTA Paris) et al.



7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 4-8, 2022

In Memory of Professor Robert Strichartz

We will be dediicating the entire conference to Professor Strichartz. A special session will be scheduled during the
conference for all to attend and reflect on their thoughts and memories of Bob. Bob is appreciated and recognized
for his organizing of the Fractals Conference Community in 2002. He will be profoundly missed by family, friends,
colleagues, and most of all, the students he mentored and influenced throughout his career.

A message from the Cornell Department of Mathematics Chair, Tara Holm:

Dear friends,

Tam sad to share that our colleague and friend Professor Robert Strichartz died yesterday, 19 December 2021, after a
long illness. He was 78.



Thank you for your attention!

8th Cornell Conference on Analysis, Probability,

and Mathematical Physics on Fractals:
June 1620, 2025
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Everybody is invited ! Scientific committee:
Patricia Alonso Ruiz, Michael Hinz, Kasso Okoudjou, Luke Rogers,
Laurent Saloff-Coste, Alexander Teplyaev
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