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Plan:

(1) Introduction: Limit laws in metric measure spaces
(2) Discrete spectrum for general DMMS
(3) Spectral convergence SU (2) — H

(4) Fractals ( ... if time permits ... )



» Typical Settings: hypoelliptic diffusions on Lie groups, self-similar pro-
cesses, Brownian motion on fractals

» Applications: limit laws for stochastic processes such as small deviations,
Chung’s LIL, heat content asymptotics

» Goal: establish spectral properties for the Dirichlet operator on open
bounded connected sets with possibly irregular boundaries to prove such
limit laws



STOCHASTIC PROCESSES IN METRIC SPACES

(X, d) complete separable locally compact metric space

(X, B (X) , i) (Radon) metric measure space (with pre-compact balls)

L? (X, p) square-integrable measurable real-valued functions on X
{X¢}e>0 X-valued (Hunt) stochastic process with Xg = g € X aus.
<—> regular Dirichlet form (€, Dg) <= {P;}¢>0 corresponding semi-

group <—> infinitesimal generator (£,D,) <= spectral properties of
(L,Dyp) <= properties of the heat kernel p (x, y) (if it exists)

UCX bounded open connected

{XtU}t>0 killed process <—> restricted Dirichlet form (EZU, @8(]) <=

infinitesimal generator (LU, @LU) <—> spectral properties of (LDU, ®LU/
<—> properties of the heat kernel p%] (x,y)



LIMIT LAWS
| X d (X, zo)

e Small deviations principle: X3¢ satisfies SDP with rates o« and (3 if there
exists a constant ¢ > 0 such that

lim —e%|loge|PlogP [ max | X el =c
lim —e™|log e|” log (O<t<1| t|<>

e Chung's LIL: X4 satisfies Chung's LIL at infinity with rate a > 0 if there
exists a constant C' > 0 such that

o log log t\ ¢
lim inf max |Xg| = C as.
t— o0 t 0<s<t

® Onsager-Machlup functional: find the asymptotics for continuous processes

P (Orgfgl d (Xt p(t)) < 6) as € — 0, p € Wy (X)



SDP AND CHUNG’S LIL IN EXAMPLES

» [R"™-valued Brownian motion By

lim —e?log P (max |B| < s> = 1
e—0 0<t<1

loglogt
lim inf 598% max |Bs| = )\% a.s.
t—o0 t 0<s<t




> Lévy'sarea Ay = [I Bi(s)dBa(s) — Ba(s)dBi(s)

T
lim —elogP (max | At < e) =35

e—0 0<t<1

log logt T
lim inf max |Ag| = — as.
t—o0 { 0<s<t 2

e B. Rémillard, On Chung’s law of the iterated logarithm for some stochastic
integrals, Ann. Probab., 1994

» Onsager-Machlup functional for standard Brownian motion in R? and
Brownian motions in Riemannian manifolds: Girsanov's transformation



BROWNIAN MOTION IN HEISENBERG GROUP
H =2 R3  Heisenberg group
1
g1-92 = (@1 + T2, Y1 + Y2, 21 + 22 + o (B1y2 — T291)

Geometry horizontal+vertical g =H GV, H = R2 V=R
Only 3 is equipped with an inner product (-, <)g¢

horizontal path « : [0, 1] — G if «y is absolutely continuous and

cy (t) := (L»y(t)_l)*;y (t) € H{ forae. t

1
£(y) = /O ey (8) gt



Hormander —— Chow-Rashevskii: any two points in H are connected by
a horizontal path

Pce Carnot-Carathéodory distance for any g1,g2 € H

| ) | Pcc (6, )
Pcc(g1,g2) := inf {£ (7) : v : [0,1] — H is horizontal,

v(0) = g1,7(1) = g2}

gt hypoelliptic Brownian motion in H

¢
g = (Bl (t), Ba (t) ’/0 Bj (s)dB2 (s) — B2(s) dB; (8)>

. d
scaling Pcc (gets €) = VEpPee (gt, €)



» infinitesimal generator is hypoelliptic

. o . d 1
» if a process X4 satisfies a scaling property | Xe¢| = €3| X¢|, then

0<s<1 )

1
:—logﬂ:"(max |X3|<1> t =g 9
t 0<s<t

e log P (max | Xs| < €

o Wy, (H) is not a linear space

® gt is not a Gaussian motion



Theorem (Carfagnini, Gordina '22 TAMS) There exists a ¢ > 0 such that

o log log t
lim inf max |gs| = ¢ as.
t—o0 t 0<s<t

lim —e?log P [ max <el| = c?.
e—0 5 <0<s<1 951 >

0 <A < imigt —<?og (ool <

< limsup —e?log P ( max |gs| < s) < f()\gl),)\?)) < 0o
e—0 Oss<1



°7Xd

HOMOGENEOUS CARNOT GROUPS:
SPECTRAL GAP AND SMALL DEVIATIONS

lim —e?log P [ max <el|=c?
e—0 5 (0<s<1 951 )

R x ... x R% homogeneous Carnot group with Haar measure

dx (G, pee, dx) (X,d, n)

Zglzl X% sub-Laplacian infinitesimal generator for
a regular Dirichlet form on L? (X, p)

fG|VLf|?Rd1d:B regular Dirichlet form on L?(G, dx)

. are left-invariant vector fields satistying Hormander condition



U C G bounded open connected

1
De (U) {f € De :supp f C U}VV2 —> (&, Dg (U)) regular Dirich-
let form on L? (U, dx)

Xt — Pf(r) =B [f(X¢)] — L

xf = PVf@@) = E°[f(XP)| = E®[f(X0),t < 0]
< LU



Theorem (Carfagnini-Gordina, '24, IMRN)

® The operator — Ly has a discrete spectrum {Ap }neN
An T oo with Ay > 0 (spectral gap)

o There exists an orthonormal basis {@n }nen of L? (U, dx) such that

— Lypn = AnPn, Yn €D (_LU)

PtU‘P'n — e_AntSon

® There exists a constant ¢(U) > 0 such that for any 1 < p < oo

Q
lenllpr(U,de) < c(U)An



O
o P*(rp >1t) = Y e *leppn()

n=1

Cn ‘= fU en(y)dy

e principal eigenvalue: dim V), = 1 and p1(x) > 0 forany x € U

No assumptions on QU



APPLICATIONS

Small deviations on Carnot groups

U C G bounded open connected
U: := d: (U) (dilation of U)
Then

)\1t

lim e ? P€ t) =
lim e (TU. > t) = c1p1(e),

where A1 is the spectral gap of —L¢; and

lim —e? log P (7‘U€ > t) = A\t
e—0

e the group of dilations acting on GG
® space-time scaling

(G, pce, dx) (X,d, )



® estimates for the spectral gap in H-type groups (M. Carfagnini and M. Gor-
dina)

e heat content: if U is a regular domain — wu(x,t) := P* (7y > t)
is the solution to the heat equation in U

Qu(t) := /U’u,(a:,t)dw = Z e_A"tc,%

n=1

lim eMiQu(t) = c%
t—o0



BEYOND CARNOT GROUPS
(JOINT WITH M. CARFAGNINI AND M. GORDINA)
Assumptions:
» (&, Dg) a regular Dirichlet form
» P;,t > 0 a strongly continuous contraction semigroup on L? (X, w)
» pi(x,y) exists for all t and for p-a.e. ¢,y € X

> PtU Is compact for some t > 0

» My (t) = esssup p?(m, y) < oo for some t
(z,y)eU XU



e Carlen-Kusuoka-Stroock '87: Nash inequality M (t) < ct™7

94 20
1l g2l < CS(f,f)IlfllLl(x) f € De

IPefll oy < Ct 8l F I,y € LN, 1), >0

e ultracontractivity, Davies, Varopoulos et al

e M. Carfagnini, M. Gordina and A. Teplyaev: Riemannian manifolds with
non-negative Ricci curvature, self-similar processes, not necessarily continuous;
Brownian motion on fractals; Dirichlet forms on mms under Sturm’s assump-
tions (complete closed balls, doubling, weak Poincaré, PHI); group action on
metric measure spaces, convergence of spectra



DISCRETE SPECTRUM FOR DIRICHLET FORMS
Theorem [Carfagnini, Gordina, Teplyaev]

e n(U) < oo == the spectrum of AU s discrete and the heat kernel
p?(aj, y) has the usual eigenfunction expansion

e If there exists a tfy > 0 such that

1
My (ty) = esssup pp (z,y) <
(zy)eUxU U n(U)?

— A1 >0



GENERALIZED HEAT CONTENT

Qu(t) := /u PT (7 > t) dm(x) = /u u(t, z)de

Theorem (C-G-T) Under ultracontractivity and other usual assumptions for
any open set U of finite measure

M4
l‘ )\]_t t — 2
Jim e Qu/(t) ];Ck,

where ¢, 1= [y ¢(x)dm(x), and My is the multiplicity of Aj.

Again, no regularity of the boundary is assumed.



ESTIMATES OF EIGENFUNCTIONS

Theorem (C-G-T) Under the usual assumptions and the Nash inequality, for
any open set U of finite measure, the spectrum is discrete and eigenfunctions
satisfy

lenllzoe < eXl,
where ¢ is a constant depending on U, «, and (3.

0 = % = % where, usually, the space is Alhfors a-regular and 3 is the time
scaling exponent if the process is (distance-)self-similar:

d(x2,z) Y Fd(xz, z).

Again, no regularity of the boundary is assumed. This inequality was obtained
by J.Kigami in case of self-similar p.c.f. fractals.

Our article contains more detailed estimates in more general ultracontractive
cases and under more specific heat kernel bounds.



SMALL DEVIATIONS

Theorem [Carfagnini, Gordina, Teplyaev] Assume that

> PtBl(m) is irreducible for some £ € X

» the heat kernel ptBl(m)(w,y) exists for all £ and for all x,y € X and
that

pt(mv y) < ct B for any t,x,y

» there exists a g such that ptol(w)(a:, y) is continuous for x,y € X
» X is self-similar
p—

A L
o lime PP ( sup d(Xs, ) < e) = c1p1(x),
e—0 0<s<t

where A1 > 0 is the spectral gap of AB1(Z) \ith zero boundary condi-
tions outside of the unit ball By(x), and ¢1 is the corresponding positive

eigenfunction, ¢, := [; on(y)p (dy)



A Borel set A € B (X) is Pg-invariant if Pt (1 4f) = 0 p-a.e. on A for
everyt > 0and f € L? (X, ).

The semigroup {Pt}t>o is called irreducible if for any Pj-invariant set A
either  (A) = 0 or u (A°) = 0.

» |If a diffusion has a positive heat kernel then this diffusion is irreducible in
each path-connected open set (killed at exiting this open set).

No regularity of the boundary is assumed.



ASYMPTOTIC DILATIONS

Contraction @ : SU (2) — H

» Both groups are equipped with a sub-Riemannian structure
» Heisenberg group H viewed as a re-scaled limit of SU (2) near the identity

Convergence of the re-normalized spectrum in SU(2) to the spectrum in the
unit ball of

Theorem (Carfagnini, Gordina, Teplyaev)

> 0 < )\I]11] < )\ﬂzﬂ < )\"3ﬂ < ... Dirichlet eigenvalues in the unit ball BT] In
H, counted with multiplicity

> 0 < A¥ < AT < A% < ... Dirichlet eigenvalues in the r-ball BEU(Z)
1 2 3

in SU(2), counted with multiplicity

— linbr%\;:)ﬂ n>1
r—



SU(2) ~ 83

1 13

H-ball H ~ R3



SU(2) ~ S3

1 1g3

H-ball H ~ R3

the Heisenberg ball [picture made by Nate Eldredge]



MOSCO CONVERGENCE, STRONG AND
NORM RESOLVENT CONVERGENCE

® U.Mosco Convergence of convex sets and of solutions of variational in-
equalities Adv. Math. (1969), Composite media and asymptotic Dirichlet
forms JFA (1994)

e T.Kato Perturbation theory for linear operators. Springer 1966.

® Reed-Simon 1972, non-negative closed quadratic forms:

» Mosco convergence is equivalent to
the strong resolvent convergence.

» The norm resolvent convergence is stronger than
the strong resolvent convergence.

» » We aim at even stronger uniform convergence of resolvent and
heat kernels and eigenfunctions using Dynkin-Hunt formula:

p(x,y) := p(x,y) — E* L <t} Pt—my (Xms y)}



Mosco convergence does not imply eigenvalues convergence:

Mdim E,, = F or E,—2 sF if

n—oo n—oo

® x,;, € L? converging weakly to © € L?, liminf Ep(x,) > F(x);

n—oo
o for each & € L2 there exists an approximating sequence of elements

xyn, € L?, converging strongly to @ lim sup Ep () < F(x).

n—0C0
Example: L? := ¢%(Z.)
2 M
En((xzg)) := |Tn| n_>oo>E =0

o(En) = {0,1} # {0} = o(E)



CONVERGENCE OF THE DIRICHLET HEAT KERNELS

H
> p, 1 (,-) Dirichlet heat kernel in the unit ball BY in H

SU(2)
» pP" (-,-) Dirichlet heat kernel in the r-ball BR"?) in SU (2)

Theorem (Carfagnini, Gordina, Teplyaev) For each t > 0

SU(2)

tim rp (271 (08@) 871 (68(2)) = oy (210)

uniformly for &,y € BT]



LOCAL CONVERGENCE OF STOCHASTIC FLOWS

» gs hypoelliptic Brownian motion on SU (2)
» X hypoelliptic Brownian motion on H

Theorem (Carfagnini, Gordina, Teplyaev) For small enough 7 there is a con-
tinuous stochastic process Y, in H such that

S
in the sense of distributions and

lim sup |Y] — X4/ =0
r—0 0<s<T

Y i=: 554]/#1’ (9,2,) s <inf{t:dy(I,Y")>1}

in probability.
Proof. ... Kunita 1986 Lectures on stochastic flows and applications, ...
plus geometric localization arguments. []

“Elliptic results” + pointed Gromov-Hausdorff convergence:
Hui-Chun Zhang and Xi-Ping Zhu. Weyl's law on RCD(K,N) metric measure

spaces. Comm. Anal. Geom. 20109.



FRACTALS (OR FRACTAFOLDS*)

» *Strichartz: A fractafold, a space that is locally modeled on a specified
fractal, is the fractal equivalent of a manifold.
» A “fractafold” is to a fractal what a manifold s to a Euclidean
half-space.
» There is no generally agreed upon definition of “fractal”, other than
"l know one when | see one”:




sub-Gaussian heat kernel estimates (sGHKE)

d

1 d(z, y)Tw-T
(1) pt(T,y) ~ Gg-exp | —c¢ :
AR tdw—1

1
distance ~ (time)dw

df — Hausdorff dimension
% = dy = “walk dimension” (~y=diffusion index)
% = dg = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980'—)



In 2 In8
:dt:dmart<dtﬂzﬁ+1<dS<df:E<2<d’w

For Sierpinski carpets there exists a unique Dirichlet form and diffusion pro-
cess due to [Barlow and Bass 1998, 1999] (see also [Barlow-Bass-Kumagai-T

2010]).

dmart = 1 is a deep result of Kusuoka-Hino, see also Kajino-Murugan.



n 2
Here di g = n3 + 1 is the topological- Hausdorff dimension of the

n
Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension:
the topological Hausdorff dimension. Adv. Math. 2015]

Roughly speaking:
dipr := 1 + inf{Hausdorff dim. of boundaries of a base of open sets}

Barlow (Proceedings of SMS Montreal, 2011):

Given a regular fractal F', since L and M are given by the construction, one
can calculate dy easily. The constant p which gives d,, is somehow deeper, and
seems to require some analysis on the set or its approximations. Loosely one can
say that dy is a ‘geometric’ constant, while d,, is an ‘analytic’ constant. One may
guess that in some sense p or § are in general inaccessible by any purely geometric
argument. (An exception is for trees, where one has d,, =1+ dy.)



Open questions:
On the Sierpinski carpet,
—dw — d digr — 1 =dw — d
K %% £ dig 1% £ log 3

would give the best Holder exponent for harmonic functions?
|Strongly supported by numerical results: L.Rogers et all

log 2

Note that (dw — d ) —Holder continuity is known: Martin Barlow. Diffusions
on fractals. In Lectures on probability theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture Notes in
Math. Springer, 1998. Heat kernels and sets with fractal structure. In Heat kernels and analysis on manifolds,

graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11-40. Amer. Math. Soc.,
Providence, RI, 2003.



BV and weak Bakry-Emery non-negative curvature [P.Alonso-
Ruiz, F.Baudoin, L.Chen, L.Rogers, N.Shanmugalingam, A.T.]

7 # 7
Definition. BV (X) := KM 1(X) = B (X) with o} = 1
the L1-Besov critical exponent, and for f € BV (X)

Var(f) := llmmf// |f(y) f() du(y) du(x).
r=0" JJar A (B (a, )

Definition. We say that (X, i, €, F) satisfies the weak-Bakry-Emery non-
negative curvature condition wBE (k) if there exist a constant C' > 0 and
a parameter 0 < Kk < dyy such that for every t > 0, g € L°°(X, )
and ¢,y € X,

(2) |Prg(z) — Pig(y)| < Cd(m,y)m

e/ dw

191l Loo(x,p0)-



o If (X,d, ) satisfies wBE(k) with Kk = dTW then the form & admits

a carré du champ operator, which means that dy, = 2 by
[Kajino-Murugan 2019 Ann. Probab. 48, 2020]

® k < 1 because d(x,y) has to be essentially equivalent to a geodesic
metric [Corollary 1.8, Theorem 2.11 Mathav Murugan JFA 2020]

® For nested fractals, p.c.f. with sGHKE ()

@ For the Sierpinski carpet we conjecture

AT =X =df —dyg + 1

In 2

where dipr = - + 1 is the topological-Hausdorff dimension of the
n

Sierpinski carpet




Connections to other areas

e Martin Barlow, Thierry Coulhon, Alexander Grigor’yan.
Manifolds and graphs with slow heat kernel decay.
Invent. Math. 144 (2001), no. 3, 609-649.

@ Joint Spectra and related Topics in Complex Dynamics and Representation
Theory: BIRS Banff 23w5033 May 21-26, 2023

e Quantum gravity and other topics in physics

e Applied mathematics



Group Theory and Complex Dynamics

The basilica Julia set, the Julia set of 22 — 1 and the limit set of the basil-
ica group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virdg, Nekra-
shevych, Kaimanovich, Nagnibeda, Lyubich et al.).

The unique graph-directed self-similar Dirichlet form has ds = 4/3
[L.Rogers and T., CPAA 2010]

Computing spectral dimension of Julia sets is an unresolved [Nekrashevych,

T, 2008]



Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Texas A6 M University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +++-+-+
Presented by Etienne Ghys

Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).




W Tours de Hanoi — Wikipédia x - a = =
€« =2 C O @ https://fr.wikipedia.org/wiki/Tours_de_Hanoi & ® % H O 9 e

aNon connecté Discussion Contributions Créer un compte Se connecter

Article Discussion Lire Modifier Plus v |Rechercher dans Wikipe Q|
N e i
WIKIPEDIA i
L aipaptin e Tours de Hanoi
Accueil o Pour les articles homonymes, voir Hanoi (homonymie).

Portails thematiques

Article au hasard >
Contact tour d'Hanoi") sont un jeu de réflexion

Les tours de Hanoi (originellement, la

imaginé par le matheématicien francgais

Souiioue Edouard Lucas, et consistant & déplacer ot
Débuter sur Wikipedia des disques de diamétres différents d'une ' i
Aide Modele d'une tour de Hanoi (avec *°

tour de « départ » a une tour d'« arrivee » Y
Communauté huit disques).

e , en passant par une tour « intermediaire »
Modifications réecentes P P :

This is a “canonical” example of a recursive algorithm in computer science.
The optimal time to solve the puzzle is 2™ — 1 while the random time to
solve the puzzle is roughly 5™, which reflect the underlying self-similar fractal
structure of the Sierpinski gasket and the sub-Gaussian HKEs.



Early physics motivation

e R. Rammal and G. Toulouse, Random walks on fractal structures and
percolation clusters. J. Physique Letters 44 (1983)

e R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45
(1984)

e E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to
the Schrodinger equation on some fractal lattices. Phys. Rev. B (3) 28
(1984)

® Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals.

I. Quasilinear lattices. Il. Sierpinski gaskets. Ill. Infinitely ramified lattices.
J. Phys. A 16 (1983)17 (1984)



Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?
Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de ’Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study

the propagation of a scalar field on such a background and we show that for almost any initial
coonditione the renarmalization oronn eannatinne lead to an effective hichlv evmmetrice mattie at



F. Englert et al. / Metric space-time

150

A

A

4
NS
P

al 3-fractal.

of a 2-dimension

st two iterations

Fig. 1. The fir



o
N
N
N
MINKOWSKIAN _\_‘?“23 EUCLIDEAN
METRICS 2 I‘? METRICS 03 —
‘s g
74 )
/ iMz
EUCLIDEAN :
METRICS |
[
|
9 ]
Y L—"
/
/ [
4 E
s
/ |
4 {
/
/ |
7 |
7 |

Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(8 + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin — to l-dimensional metrics. M, M,, M; denote unstable minkowskian

fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0;, 0, and 0; associated to 0-dimensional

geometries are located at the origin and at infinity on the (a, 8) coordinates axis. The six straight lines arc subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of
them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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4>

q: .. | ds

Figure 6.4. Geometric interpretation of Proposition 6.1.



PRL 95, 171301 (2003)
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21 OCTOBER 2003

The Spectral Dimension of the Universe is Scale Dependent

J. Ambjgrn,"* J. Jurkiewicz,” and R. Loll**

'The Niels Bohr Instiute, Capenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University
Reymonta 4, PL 30-059 Krakow, Poland

*Institute for Theoretical Physics, Utrecht University, Lewvenlaan 4, NL-3584 CE Utrechs, The Netherlands
(Received 13 May 2003; published 20 October 200)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL: 10.1103/PhysRevLett.93.171301

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers n otherwise disparate approaches to
quantum gravity 1 that the microstructure of space and

time may provide a physical regulator for the ultraviolet
infinities enconntered in nerturhative anantum field theorv

PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

tral dimension, a diffeomorphism-invariant quantity ob-
tamned from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-

curacy, 1t 15 equal to four, in agreement with earlier mea-
snrements of the laroe=scale dimensionalitv hased on the



Fractal space-times under the microscope:
A Renormalization Group view on Monte Carlo data
[Martin Reuter, Frank Saueressig]:

Three scaling regimes of the effective space-times of asymptotically safe Quan-
tum Einstein Gravity (QEG):

(1) a classical regime ds = d, dy, = 2,

(2) a semi-classical regime ds = 2d/(2 + d), dyw = 2 + d,

(3) the UV-fixed point regime ds = d/2, dy = 4.

On the length scales covered by three-dimensional Monte Carlo simulations,
the resulting spectral dimension is in very good agreement with the data
and provides a natural explanation for the apparent puzzle between the short
distance behavior of the spectral dimension reported from Causal Dynami-
cal Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

e (Quasisymmetric uniformization and heat kernel estimates by Mathav Mu-
rugan: dy = dy which is consistent with ds = 2df/dw = 2
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Causal dynamical triangulations

25,971 views Jan 26, 2013 Causal dynamical triangulation (CDT) is a lattice model
of quantum gravity. In two space-time dimensions (instead of the four we live in) it
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large
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