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Plan:

(1) Introduction: Limit laws in metric measure spaces

(2) Discrete spectrum for general DMMS

(3) Spectral convergence SU (2) −→ H

(4) Fractals ( ... if time permits ... )



▶ Typical Settings: hypoelliptic diffusions on Lie groups, self-similar pro-
cesses, Brownian motion on fractals

▶ Applications: limit laws for stochastic processes such as small deviations,
Chung’s LIL, heat content asymptotics

▶ Goal: establish spectral properties for the Dirichlet operator on open
bounded connected sets with possibly irregular boundaries to prove such
limit laws



STOCHASTIC PROCESSES IN METRIC SPACES

(X, d) complete separable locally compact metric space

(X,B (X) , µ) (Radon) metric measure space (with pre-compact balls)

L2 (X, µ) square-integrable measurable real-valued functions on X

{Xt}t⩾0 X-valued (Hunt) stochastic process with X0 = x0 ∈ X a.s.
⇐⇒ regular Dirichlet form (E,DE) ⇐⇒ {Pt}t⩾0 corresponding semi-
group ⇐⇒ infinitesimal generator (L,DL) ⇐⇒ spectral properties of
(L,DL) ⇐⇒ properties of the heat kernel pt (x, y) (if it exists)

U ⊂ X bounded open connected

{XU
t }t⩾0 killed process ⇐⇒ restricted Dirichlet form

(
EU ,DEU

)
⇐⇒

infinitesimal generator
(
LU ,DLU

)
⇐⇒ spectral properties of

(
LU ,DLU

)

⇐⇒ properties of the heat kernel pUt (x, y)



LIMIT LAWS

|Xt| d (Xt, x0)

• Small deviations principle: Xt satisfies SDP with rates α and β if there
exists a constant c > 0 such that

lim
ε→0

−εα| log ε|β logP

(
max
0⩽t⩽1

|Xt| < ε

)
= c

• Chung’s LIL: Xt satisfies Chung’s LIL at infinity with rate a > 0 if there
exists a constant C > 0 such that

lim inf
t→∞

(
log log t

t

)a

max
0⩽s⩽t

|Xs| = C a.s.

• Onsager-Machlup functional: find the asymptotics for continuous processes

P

(
max
0⩽t⩽1

d (Xt, φ(t)) < ε

)
as ε → 0, φ ∈ Wx0 (X)



SDP AND CHUNG’S LIL IN EXAMPLES

▶ Rn-valued Brownian motion Bt

lim
ε→0

−ε2 logP

(
max
0⩽t⩽1

|Bt| < ε

)
= λ1

lim inf
t→∞

√
log log t

t
max
0⩽s⩽t

|Bs| = λ2
1 a. s.



▶ Lévy’s area At =
∫ t
0 B1(s)dB2(s) − B2(s)dB1(s)

lim
ε→0

−ε logP

(
max
0⩽t⩽1

|At| < ε

)
=

π

2

lim inf
t→∞

log log t

t
max
0⩽s⩽t

|As| =
π

2
a.s.

• B. Rémillard, On Chung’s law of the iterated logarithm for some stochastic
integrals, Ann. Probab., 1994

▶ Onsager-Machlup functional for standard Brownian motion in Rd and
Brownian motions in Riemannian manifolds: Girsanov’s transformation



BROWNIAN MOTION IN HEISENBERG GROUP

H ∼= R3 Heisenberg group

g1 · g2 :=

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)

Geometry horizontal+vertical g = H ⊕ V, H = R2, V = R

Only H is equipped with an inner product ⟨·, ·⟩H
horizontal path γ : [0, 1] → G if γ is absolutely continuous and

cγ (t) := (L
γ(t)−1)∗γ̇ (t) ∈ H for a.e. t

ℓ(γ) :=

∫ 1

0
|cγ(t)|Hdt



Hörmander =⇒ Chow–Rashevskii: any two points in H are connected by
a horizontal path

ρcc Carnot-Carathéodory distance for any g1, g2 ∈ H

| · | ρcc (e, ·)

ρcc(g1, g2) := inf {ℓ (γ) : γ : [0, 1] → H is horizontal,

γ(0) = g1, γ(1) = g2}

gt hypoelliptic Brownian motion in H

gt =

(
B1 (t) , B2 (t) ,

∫ t

0
B1 (s) dB2 (s) − B2 (s) dB1 (s)

)

scaling ρcc (gεt, e)
d
=

√
ερcc (gt, e)



▶ infinitesimal generator is hypoelliptic

▶ if a process Xt satisfies a scaling property |Xεt| d
= ε

1
δ|Xt|, then

εδ logP

(
max
0⩽s⩽1

|Xs| < ε

)

=
1

t
logP

(
max
0⩽s⩽t

|Xs| < 1

)
t = ε−δ

• Wx0 (H) is not a linear space

• gt is not a Gaussian motion



Theorem (Carfagnini, Gordina ’22 TAMS) There exists a c > 0 such that

lim inf
t→∞

√
log log t

t
max
0⩽s⩽t

|gs| = c a.s.

lim
ε→0

−ε2 logP

(
max
0⩽s⩽1

|gs| < ε

)
= c2.

0 < λ
(2)
1 ⩽ lim inf

ε→0
−ε2 logP

(
max
0⩽s⩽1

|gs| < ε

)

⩽ lim sup
ε→0

−ε2 logP

(
max
0⩽s⩽1

|gs| < ε

)
⩽ f(λ

(1)
1 , λ

(2)
1 ) < ∞



HOMOGENEOUS CARNOT GROUPS:
SPECTRAL GAP AND SMALL DEVIATIONS

lim
ε→0

−ε2 logP

(
max
0⩽s⩽1

|gs| < ε

)
= c2

G Rd1 × · · · × Rdr homogeneous Carnot group with Haar measure

dx (G, ρcc, dx)
replace by−−−−−→ (X, d, µ)

L
∑d1

k=1X
2
k sub-Laplacian

replace by−−−−−→ infinitesimal generator for

a regular Dirichlet form on L2 (X,µ)

E(f)
∫
G|∇Lf |2Rd1

dx regular Dirichlet form on L2(G, dx)

X1, . . . , Xd1 are left-invariant vector fields satisfying Hörmander condition



U ⊂ G bounded open connected

DE (U) {f ∈ DE : supp f ⊂ U}W
1
2 =⇒ (E,DE (U)) regular Dirich-

let form on L2 (U, dx)

Xt ⇐⇒ Ptf(x) = Ex [f(Xt)] ⇐⇒ L

XU
t ⇐⇒ PU

t f(x) = Ex
[
f(XU

t )
]

= Ex [f(Xt), t < τU ]

⇐⇒ LU



Theorem (Carfagnini-Gordina, ’24, IMRN)

• The operator −LU has a discrete spectrum {λn}n∈N

λn ↑ ∞ with λ1 > 0 (spectral gap)

• There exists an orthonormal basis {φn}n∈N of L2 (U, dx) such that

− LUφn = λnφn, φn ∈ D (−LU)

PU
t φn = e−λntφn

• There exists a constant c(U) > 0 such that for any 1 ⩽ p ⩽ ∞

∥φn∥Lp(U,dx) ⩽ c(U)λ
Q
2
n



• Px (τU > t) =
∞∑

n=1
e−λntcnφn(x)

cn :=
∫
U φn(y)dy

• principal eigenvalue: dimVλ1
= 1 and φ1(x) > 0 for any x ∈ U

No assumptions on ∂U



APPLICATIONS

Small deviations on Carnot groups

U ⊂ G bounded open connected

Uε := δε (U) (dilation of U )

Then

lim
ε→0

e
λ1t

ε2 Pe (τUε > t
)
= c1φ1(e),

where λ1 is the spectral gap of −LU and

lim
ε→0

−ε2 logPe (τUε > t
)
= λ1t

• the group of dilations acting on G

• space-time scaling

(G, ρcc, dx)
replace by−−−−−→ (X, d, µ)



• estimates for the spectral gap in H-type groups (M. Carfagnini and M. Gor-
dina)

• heat content: if U is a regular domain =⇒ u(x, t) := Px (τU > t)
is the solution to the heat equation in U

QU(t) :=

∫

U
u(x, t)dx =

∞∑

n=1

e−λntc2n

lim
t→∞

eλ1tQU(t) = c21



BEYOND CARNOT GROUPS
(JOINT WITH M. CARFAGNINI AND M. GORDINA)

Assumptions:

▶ (E,DE) a regular Dirichlet form

▶ Pt, t ⩾ 0 a strongly continuous contraction semigroup on L2 (X, µ)

▶ pt(x, y) exists for all t and for µ-a.e. x, y ∈ X

▶ PU
t is compact for some t > 0

▶ MU (t) = ess sup
(x,y)∈U×U

pUt (x, y) < ∞ for some t



• Carlen-Kusuoka-Stroock ’87: Nash inequality M (t) ⩽ ct−γ

∥f∥2+
2α
β

L2(X,µ)
⩽ CE(f, f)∥f∥

2α
β

L1(X,µ)
f ∈ DE

∥Ptf∥L∞(X,µ) ⩽ C t
−α

β∥f∥L1(X,µ) f ∈ L1(X, µ), t > 0

• ultracontractivity, Davies, Varopoulos et al

• M. Carfagnini, M. Gordina and A. Teplyaev: Riemannian manifolds with
non-negative Ricci curvature, self-similar processes, not necessarily continuous;
Brownian motion on fractals; Dirichlet forms on mms under Sturm’s assump-
tions (complete closed balls, doubling, weak Poincaré, PHI); group action on
metric measure spaces, convergence of spectra



DISCRETE SPECTRUM FOR DIRICHLET FORMS

Theorem [Carfagnini, Gordina, Teplyaev]

• µ(U) < ∞ =⇒ the spectrum of AU is discrete and the heat kernel
pUt (x, y) has the usual eigenfunction expansion

• If there exists a tU > 0 such that

MU (tU) = ess sup
(x,y)∈U×U

pUtU(x, y) <
1

µ(U)2

=⇒ λ1 > 0



GENERALIZED HEAT CONTENT

QU(t) :=

∫

U
Px (τU > t) dm(x) =

∫

U
u(t, x)dx

Theorem (C-G-T) Under ultracontractivity and other usual assumptions for
any open set U of finite measure

lim
t→∞

eλ1tQU(t) =

M1∑

k=1

c2k,

where ck :=
∫
Uϕk(x)dm(x), and M1 is the multiplicity of λ1.

Again, no regularity of the boundary is assumed.



ESTIMATES OF EIGENFUNCTIONS

Theorem (C-G-T) Under the usual assumptions and the Nash inequality, for
any open set U of finite measure, the spectrum is discrete and eigenfunctions
satisfy

∥φn∥L∞ ⩽ cλδ
n,

where c is a constant depending on U, α, and β.

δ = α
β = 2

ν where, usually, the space is Alhfors α-regular and β is the time

scaling exponent if the process is (distance-)self-similar :

d(Xx
tε, x)

(d)
= ε

1
βd(Xx

t , x).

Again, no regularity of the boundary is assumed. This inequality was obtained
by J.Kigami in case of self-similar p.c.f. fractals.

Our article contains more detailed estimates in more general ultracontractive
cases and under more specific heat kernel bounds.



SMALL DEVIATIONS

Theorem [Carfagnini, Gordina, Teplyaev] Assume that

▶ P
B1(x)
t is irreducible for some x ∈ X

▶ the heat kernel p
B1(x)
t (x, y) exists for all t and for all x, y ∈ X and

that

pt(x, y) ⩽ c t
−α

β for any t, x, y

▶ there exists a t0 such that p
B1(x)
t0

(x, y) is continuous for x, y ∈ X

▶ Xx
t is self-similar

=⇒

• lim
ε→0

e
λ1

t

εβPx

(
sup

0⩽s⩽t
d(Xs, x) < ε

)
= c1φ1(x),

where λ1 > 0 is the spectral gap of AB1(x) with zero boundary condi-
tions outside of the unit ball B1(x), and φ1 is the corresponding positive
eigenfunction, cn :=

∫
U φn(y)µ (dy)



A Borel set A ∈ B (X) is Pt-invariant if Pt (1Af) = 0 µ-a.e. on A for
every t > 0 and f ∈ L2 (X, µ).

The semigroup {Pt}t⩾0 is called irreducible if for any Pt-invariant set A
either µ (A) = 0 or µ (Ac) = 0.

▶ If a diffusion has a positive heat kernel then this diffusion is irreducible in
each path-connected open set (killed at exiting this open set).

No regularity of the boundary is assumed.



ASYMPTOTIC DILATIONS

Contraction Φ : SU (2) −→ H

▶ Both groups are equipped with a sub-Riemannian structure

▶ Heisenberg group H viewed as a re-scaled limit of SU (2) near the identity

Convergence of the re-normalized spectrum in SU(2) to the spectrum in the
unit ball of H

Theorem (Carfagnini, Gordina, Teplyaev)

▶ 0 < λH
1 < λH

2 ⩽ λH
3 ⩽ ... Dirichlet eigenvalues in the unit ball BH

1 in
H, counted with multiplicity

▶ 0 < λr
1 < λr

2 ⩽ λr
3 ⩽ ... Dirichlet eigenvalues in the r-ball B

SU(2)
r

in SU(2), counted with multiplicity

=⇒ lim
r→0

r2λr
n = λH

n n ⩾ 1



SU(2) ∼ S3

H ∼ R3

1
r SU(2) ∼ 1

rS
3

H-ball

1



SU(2) ∼ S3

H ∼ R3

1
r SU(2) ∼ 1

rS
3

H-ball

1

the Heisenberg ball [picture made by Nate Eldredge]



MOSCO CONVERGENCE, STRONG AND
NORM RESOLVENT CONVERGENCE

• U.Mosco Convergence of convex sets and of solutions of variational in-
equalities Adv. Math. (1969), Composite media and asymptotic Dirichlet
forms JFA (1994)

• T.Kato Perturbation theory for linear operators. Springer 1966.
• Reed-Simon 1972, non-negative closed quadratic forms:

▶ Mosco convergence is equivalent to
the strong resolvent convergence.

▶ The norm resolvent convergence is stronger than
the strong resolvent convergence.

▶ ▶ We aim at even stronger uniform convergence of resolvent and
heat kernels and eigenfunctions using Dynkin-Hunt formula:

pUt (x, y) := pt(x, y) − Ex
[
1{τU<t} pt−τU

(
XτU, y

)]



Mosco convergence does not imply eigenvalues convergence:

M-lim
n→∞En = F or En

M−−−−→
n→∞ F if:

• xn ∈ L2 converging weakly to x ∈ L2, lim inf
n→∞ En(xn) ≥ F (x);

• for each x ∈ L2 there exists an approximating sequence of elements
xn ∈ L2, converging strongly to x lim sup

n→∞
En(xn) ≤ F (x).

Example: L2 := ℓ2(Z+)

En((xk)) := |xn|2 M−−−−→
n→∞ E = 0

σ(En) = {0, 1} ̸= {0} = σ(E)



CONVERGENCE OF THE DIRICHLET HEAT KERNELS

▶ p
BH

1
t (·, ·) Dirichlet heat kernel in the unit ball BH

1 in H

▶ p
B

SU(2)
r

t (·, ·) Dirichlet heat kernel in the r-ball B
SU(2)
r in SU (2)

Theorem (Carfagnini, Gordina, Teplyaev) For each t > 0

lim
r→0

r4p
B

SU(2)
r

r2t

(
Φ−1

(
δHr (x)

)
,Φ−1

(
δHr (x)

))
= p

BH
1

t (x, y)

uniformly for x, y ∈ BH
1



LOCAL CONVERGENCE OF STOCHASTIC FLOWS

▶ gs hypoelliptic Brownian motion on SU (2)

▶ Xs hypoelliptic Brownian motion on H

Theorem (Carfagnini, Gordina, Teplyaev) For small enough r there is a con-
tinuous stochastic process Y r

s in H such that

Y r
s :=: δH1/rΦ

(
gr2s

)
s < inf{t : dH(I, Y r

s ) ⩾ 1}
in the sense of distributions and

lim
r→0

sup
0⩽s⩽T

|Y r
s − Xs| = 0

in probability.

Proof. ... Kunita 1986 Lectures on stochastic flows and applications, ...
plus geometric localization arguments. □
“Elliptic results” + pointed Gromov-Hausdorff convergence:
Hui-Chun Zhang and Xi-Ping Zhu. Weyl’s law on RCD(K,N) metric measure
spaces. Comm. Anal. Geom. 2019.



FRACTALS (OR FRACTAFOLDS∗)

▶ *Strichartz: A fractafold, a space that is locally modeled on a specified
fractal, is the fractal equivalent of a manifold.

▶ A “fractafold” is to a fractal what a manifold is to a Euclidean
half-space.
▶ There is no generally agreed upon definition of “fractal”, other than

“I know one when I see one”:



sub-Gaussian heat kernel estimates (sGHKE)

(1) pt(x, y) ∼ 1

tdf/dw
exp


−c

d(x, y)
dw

dw−1

t
1

dw−1




distance ∼ (time)
1
dw

df = Hausdorff dimension
1
γ = dw = “walk dimension” (γ=diffusion index)

2df
dw

= dS = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980’—)



1 = dt = dmart < dtH =
ln 2

ln 3
+1 < dS < df =

ln 8

ln 3
< 2 < dw

For Sierpinski carpets there exists a unique Dirichlet form and diffusion pro-
cess due to [Barlow and Bass 1998, 1999] (see also [Barlow-Bass-Kumagai-T
2010]).

dmart = 1 is a deep result of Kusuoka-Hino, see also Kajino-Murugan.



Here dtH =
ln 2

ln 3
+1 is the topological-Hausdorff dimension of the

Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension:
the topological Hausdorff dimension. Adv. Math. 2015.]

Roughly speaking:

dtH := 1 + inf{Hausdorff dim. of boundaries of a base of open sets}

Barlow (Proceedings of SMS Montreal, 2011):

ANALYSIS ON THE SIERPINSKI CARPET 11

A simpler argument, also using the (local) reflection symmetry of F̃ , gives a
weak lower bound on the probability of hitting small balls: if y ∈ B(x0, R/2dL),
λ ∈ (0, 1/10dL), then for the process W =W x0 ,

(2.8) Px(TB(y,λR) < τx0,R) > p0λ
γ .

Here p0 and γ > 0 depend only on F .
If h is harmonic on B = B(x0, R) then h(W x) is a martingale. Hence if

T = τB(W
x) ∧ τB(W y),

h(x)− h(y) = E(h(W x
T )− h(W y

T ))

= E(h(W x
T )− h(W y

T );T < TC)

≤ P(T < TC) sup
x,y∈B

(h(x) − h(y)) ≤ (1− pF ) sup
x,y∈B

(h(x) − h(y)).

Hence, writing
Osc
A
f = sup

A
f − inf

A
f,

and B′ = B(x0, R/2dL), we have

(2.9) Osc
B′

h ≤ (1− pF )Osc
B
h.

This oscillation inequality is not quite enough on its own to give the Harnack
inequality – see the example in [Ba3]. However, combined with (2.8) a standard
argument (see for example [FS]) gives the elliptic Harnack inequality Theorem 2.9.

We have three ‘scale factors’ for the SC:
1. L = LF , the length scaling factor.
2. M =MF , the volume scaling factor.
3. ρ, the ‘resistance scaling factor’.

As stated above, for the basic SC in d dimensions, L = 3, and M = 3d − 1. For
[0, 1]d (which can be regarded as a trivial SC) if L = 3 then M = 3d and ρ = 32−d.
Recall the definition of df from (2.1), and set

dw(F ) = dw =
logMρ

logL
.

dw was called by physicists the walk dimension and is related to space time scaling
of the heat equation. It turns out that one always has dw ≥ 2: for the SC in d
dimensions this follows from the lower bound in (2.6).

Given a regular fractal F , since L and M are given by the construction, one
can calculate df easily. The constant ρ which gives dw is somehow deeper, and
seems to require some analysis on the set or its approximations. Loosely one can
say that df is a ‘geometric’ constant, while dw is an ‘analytic’ constant. One may
guess that in some sense ρ or β are in general inaccessible by any purely geometric
argument. (An exception is for trees, where one has dw = 1 + df .)

The two inputs (Theorem 2.8 and Theorem 2.9) lead to good control of the

heat equation in F̃ .

Theorem 2.11. [BB5] Let pt(x, y) be the heat kernel on the pre-SC F̃ . Then
writing β = dw

(2.10) pt(x, y)
(c)≍ cµ(B(x, t1/β))−1 exp(−c(d(x, y)β/t)1/(β−1)),

for (t, x, y) such that t ≥ 1 ∨ d(x, y).



Open questions:

On the Sierpinski carpet,

κ = dW − df + dtH − 1 = dW − df +
log 2

log 3
would give the best Hölder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al]

Note that (dW − df) –Hölder continuity is known: Martin Barlow. Diffusions

on fractals. In Lectures on probability theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture Notes in

Math. Springer, 1998. Heat kernels and sets with fractal structure. In Heat kernels and analysis on manifolds,

graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11–40. Amer. Math. Soc.,

Providence, RI, 2003.



BV and weak Bakry-Émery non-negative curvature [P.Alonso-
Ruiz, F.Baudoin, L.Chen, L.Rogers, N.Shanmugalingam, A.T.]

Definition. BV (X) := KSλ
#
1 ,1(X) = B1,α

#
1 (X) with α

#
1 =

λ
#
1

dW
the L1–Besov critical exponent, and for f ∈ BV (X)

Var(f) := lim inf
r→0+

∫∫

∆r

|f(y) − f(x)|
rλ

#
1 µ(B(x, r))

dµ(y) dµ(x).

Definition. We say that (X,µ,E,F) satisfies the weak-Bakry-Émery non-
negative curvature condition wBE(κ) if there exist a constant C > 0 and
a parameter 0 < κ < dW such that for every t > 0, g ∈ L∞(X,µ)
and x, y ∈ X,

|Ptg(x) − Ptg(y)| ≤ C
d(x, y)κ

tκ/dW
∥g∥L∞(X,µ).(2)



• If (X, d, µ) satisfies wBE(κ) with κ = dW
2 , then the form E admits

a carré du champ operator, which means that dw = 2 by
[Kajino-Murugan 2019 Ann. Probab. 48, 2020]

• κ ⩽ 1 because d(x, y) has to be essentially equivalent to a geodesic
metric [Corollary 1.8, Theorem 2.11 Mathav Murugan JFA 2020]

• For nested fractals, p.c.f. with sGHKE (1)

λ
#
1 = λ∗

1 = dWα∗
1 = df

• For the Sierpinski carpet we conjecture

λ
#
1 = λ∗

1 = df − dtH + 1

where dtH =
ln 2

ln 3
+ 1 is the topological-Hausdorff dimension of the

Sierpinski carpet



Connections to other areas

•Martin Barlow, Thierry Coulhon, Alexander Grigor’yan.
Manifolds and graphs with slow heat kernel decay.
Invent. Math. 144 (2001), no. 3, 609–649.

• Joint Spectra and related Topics in Complex Dynamics and Representation
Theory: BIRS Banff 23w5033 May 21–26, 2023

•Quantum gravity and other topics in physics
• Applied mathematics



Group Theory and Complex Dynamics

The basilica Julia set, the Julia set of z2 − 1 and the limit set of the basil-
ica group of exponential growth (Grigorchuk, Żuk, Bartholdi, Virág, Nekra-
shevych, Kaimanovich, Nagnibeda, Lyubich et al.).
The unique graph-directed self-similar Dirichlet form has ds = 4/3
[L.Rogers and T., CPAA 2010]
Computing spectral dimension of Julia sets is an unresolved [Nekrashevych,
T, 2008]



Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk 1, Zoran Šuniḱ
Department of Mathematics, Texas A&M University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +++++

Presented by Étienne Ghys

Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier

graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since

they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite

this article: R. Grigorchuk, Z. Šuniḱ, C. R. Acad. Sci. Paris, Ser. I 344 (2006).
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This is a “canonical” example of a recursive algorithm in computer science.
The optimal time to solve the puzzle is 2n − 1 while the random time to
solve the puzzle is roughly 5n, which reflect the underlying self-similar fractal
structure of the Sierpinski gasket and the sub-Gaussian HKEs.
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We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = /3/(,8 + 1) separates the domain of euclidean 
metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the

PRL 95, 171301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
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Fractal space-times under the microscope:
A Renormalization Group view on Monte Carlo data
[Martin Reuter, Frank Saueressig]:

Three scaling regimes of the effective space-times of asymptotically safe Quan-
tum Einstein Gravity (QEG):

(1) a classical regime ds = d, dw = 2,
(2) a semi-classical regime ds = 2d/(2 + d), dw = 2 + d,
(3) the UV-fixed point regime ds = d/2, dw = 4.

On the length scales covered by three-dimensional Monte Carlo simulations,
the resulting spectral dimension is in very good agreement with the data
and provides a natural explanation for the apparent puzzle between the short
distance behavior of the spectral dimension reported from Causal Dynami-
cal Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

•Quasisymmetric uniformization and heat kernel estimates by Mathav Mu-
rugan: dw = df which is consistent with ds = 2df/dw = 2
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