Evaluating Integrals Using Self-Similarity

Robert S. Strichartz

In memory of Henrietta Mazen

1. INTRODUCTION. It is generally believed that there are two elementary meth-
ods for evaluating definite integrals:

1. the method of Archimedes, in which you partition the interval, form an
approximating sum (often called a Riemann sum), and take a limit;

2. the method of Newton and Leibniz, involving the Fundamental Theorem of
the Calculus, in which you find an antiderivative by inspired guesswork, and
then compute the increment over the interval.

There are more advanced methods, especially Cauchy’s residue calculus using
complex variable theory, but a typical calculus course mentions only these two
methods. Students quickly learn from experience that Archimedes really was a
genius, but for practical purposes the Fundamental Theorem is the way to go.

But there is a third method, which is quite elementary although not well known.
It is derived from the theory of integration on fractals, and is based on a
self—similarity property of the unit interval. It is not a truly practical method, since
it gives exact answers only for integrals of polynomials, but it illustrates the
important mathematical article of faith that the study of exotic structures can
produce new insights into old and commonplace subjects. After presenting the
method in the context of ordinary integrals, I indicate how it can be adapted to the
context of integrals on fractals, where it is essentially the only method available.

It is necessary to assume that the integral has a few elementary properties:

() linearity,

[[(eifi(x) + exfo(x)) ds = e [ fi(x)dr + e, [ F(x) d
(i) additivity,
fabf(x)dx - f:f(x) dx + ]be(x)dx

(iii) linear change of variable,

cf;f(cx +d) dx = /CC”+(’f(x) d

a+d

(iv) integration of constants,
b
f cdx =c(b —a).
a

These properties are easily derived from any reasonable definition of the integral.
Of course (iii) is a special case of the more general change of variable formula,
which is not as simple.

2. SELF-SIMILARITY OF THE INTERVAL. For simplicity of notation we work
with the unit interval [0, 1], but the same considerations apply to any interval. If we
break the interval in half, then each half is similar to the whole: the left half [0, %]
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is the image of [0, 1] under the mapping 1x, while the right half [, 1] is the image
of [0, 1] under the mapping 3x + 3. Both mappings are similarities because they
scale down all distances by a factor of 1; see Figure 1.

For any function f, we have

[ fCoydx = [Vpceyac+ [ f(x) dx
0 0 1/2
by additivity, while
1,2 1.4 /1
/0 f(x) dx = Efof(ax)dx
and
1 1 4 (1 1
L/Zf(x) dx = Efof(gx + E) dx

by the linear change of variable property. Altogether we obtain the self-similar
identity

1 0 1 .4 /1 0 1 (1 l)d .
= — — + = —x + — | dx.
[y a3 [t 55 v 5[50+ 5 ) )
There is a simple geometric explanation of this identity: the region under the
graph of f is cut in half and each half is stretched horizontally by a factor of 2,

which explains why we have to compensate by multiplying by the factor of 1; see
Figure 2.

/1 N\

Figure 2

April 2000] EVALUATING INTEGRALS USING SELF-SIMILARITY 317

This content downloaded from 50.28.184.106 on Tue, 07 Feb 2017 20:53:24 UTC
All use subject to http://about.jstor.org/terms



The self-similar identity expresses the consequences for the integral of the
self—similarity of the interval. Aside from its intrinsic interest, it can be used as a
tool for evaluating integrals. Before doing this, I want to mention a small point
that the reader may have already noticed: there are many other ways to express the
self—similarity of the interval. You can break up the interval into more than two
intervals (they do not even have to be the same length), each similar to the whole
interval. For each such decomposition there is-a corresponding self—similar iden-
tity. For the calculations we are going to do, the single identity (1) suffices, so we
leave the general form as an exercise for the reader.

3. INTEGRALS OF POLYNOMIALS. We want to obtain the basic integration
formula

1
1

"dx = =0,1,2,... 2
j(;xdx }’l-}—l’n Oaaa ()

as a consequence of the self-similar identity (1). We observe that (2) and
properties (ii) and (iii) imply the more general integral formula

bn+1 _ an+l

b” —_
fde_ n+1 ~

a

and we can integrate any polynomial using (i). Note that for n = 0, (2) is just our
assumption (iv), so the first non—trivial case is n# = 1. We can obtain this by taking
f(x) = x in (1). Then we have

1 1 1
[ledx=Efol(ax)dx+zfol(5x+5)dx,

and using linearity

1 1 1 1 1
/Oxdx=§fxdx+zfdx.
Note that f o Xdx appears on both sides of the equation, but multiplied by different

constants, and [; dx = 1 by the n = 0 case. Thus we may bring all the [jxdx
terms to the left side to obtain

1 1 1
Ej;)lxdx=zj;)1dx=z

which implies (2) for n = 1. While this may not seem like such a big deal (we could
actually evaluate this integral by interpreting it as the area of a triangle), you
should notice that the answer 3 was obtained as (1/4)/(1 — 1/2), and this is
different from the computation that occurs if you use method 1) or 2).

So what happens if you substitute f(x) = x* in (1)? You get

folxzdx— ;[1(%x)2dx+ %f(%x+%)zdx
=1f01x dx + fxzdx+%f01xdx+%foldx.

Figure 3 shows the decomposition of the reglon under the graph of f(x) = x*
corresponding to this identity. Bring all the x 2 dx terms to the left side, and use

o
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Figure 3

the previous evaluations (n = 0 or 1) to obtain

1
4/ "3 273 4’
so the correct answer 3 emerges as (1/4) /(1 — 1/4).
Shall we try n = 3?

3

3 3
1, 1 (1 1 (1 1
de=—[Y=x| de+ = ["=x+ =] a
J,* 210(2") 210(2)‘ 2] @
1 . 1 . 3 3 1 .
= — | XPdc+ — [ xPde+ — + — + —
16f0x 16f0x 16fxdx 16 de 16[0dx
hence
L, 301 3 1 1 7
= — s — =
8/0x 6 3 16 2 16 2

It is clear that we can continue indefinitely computing | le” dx for higher values of
n, at each stage using the results previously obtained, but it is not obvious that this
effort can produce the correct answer. This requires a little bit of algebra, and of
course the finite binomial formula.

Let’s try to prove (2) by induction, assuming that it holds for all integers less
than n. Substituting f(x) = x" in (1) yields

1 1\" 1 1 1\"
folx”dx=§f01(5x) dx+§f01(5x+§) dx

_ Tlﬂ(/olx"dx + /](x + 1)"aix)
b Bl

The induction hypothesis ensures that [Ox" dx =1/(k + 1), since k <n — 1. We

thus obtain
2" =1\ m 1ozl o 1
"dx = —— .
( 2" )/ox 7k (k)(k+1)

To complete the proof of (2) we need to verify only the following algebraic lemma:
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n—1{n 1 __ 2 n o__
Lemma. k=0(k)(k+1)_(n+l)(2 1.

Proof: Note that
n\(nt1 n!
(ka+1)_ ki(n —k)!

so that
n—1 n—1 n
0} ) - PAHE s,

j=1

(Z:i)z(kf%;?iM!z(ZI”

Since E"“(" j 1)= 2"*1 and we are missing the two terms j =0 and j =n + 1

that each contribute 1, we have X7_, (" ;’ 1): 2n+l _ 9,

4. ITERATION, AND THE CONNECTION WITH RIEMANN SUMS. There do
not seem to be any other integrals that can be evaluated exactly by the self—simi-
larity method, but we can use it to gain some insight into the integral of a general
function. The self-similar identity (1), like many other aspects of self-similarity,
seems to invite iteration. This just means that we substitute the same identity, for
the function f(3x) and f(3x + 1), into the right side of (1). This yields

ff(x)dx— 4ff(—x)dx+ 4ff( —x + )dx+ 4[f(—x+ 2)g[x
sl i

If we repeat the process again and again, we arrive at the expression

2”1 ’1
a5 £ [0 3)
for any positive integer m.

k=0

This resembles a Riemann sum. If we subdivide the interval into 2 subintervals
of length 1/2™ each, then the Riemann sums take the form

1 2"-1
X

7w T 1)
where x, lies in the interval [k27",(k + 1)27"]. So the only difference is that
instead of choosing a point x, in the interval to evaluate the function at, we take
the average value [, f((x + k)/2")dx of f over the interval. In contrast to the
Riemman sum, we get the exact value of the integral at each stage, so it is not
necessary to take the limit as m — c. But we certainly are allowed to take this
limit, and if we don’t know how to evaluate the integrals on the right side of (3),
then this is the best thing to do. If the function f is assumed to be continuous on
[0, 1], then the values on each of the subintervals do not vary by very much for
large values of m, so the average value and any typical value f(x,) are very close;
strictly speaking, this argument requires uniform continuity, and the non—elemen-
tary theorem that a continuous function in [0, 1] is automatically uniformly continu-
ous. The formula

[ira= im 28 {0 a

k=0
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is almost the same as the usual definition of the integral as the limit of Riemann
sums. This is just method 1) for evaluating integrals, nothing really new. However,
the Riemann sums came out of the self—similar method. Also, the evaluation of
integrals of polynomials in Section 3 did not use iteration and limits, and is
genuinely different.

5. EXOTIC INTEGRALS ON THE INTERVAL. It is not necessary to pass to
exotic fractal geometry to obtain exotic integrals. We can stay with the plain old
interval, but consider exotic averages in place of the usual integral. The technical
term is integration with respect to self—similar measures, but we can explain the ideas
on an intuitive level by referring to probability. It is best to put aside the area
interpretation of the integral, and think only about the average interpretation:
folf(x)dx is the average value of f on the interval. We also say that it is the
expected value of f with respect to the uniform probability distribution on the
interval. If we choose numbers x in [0, 1] at random, then the integral gives the
average value of f(x) that we find.

How do we choose a number at random? Let’s represent x in binary notation
X = .X;X,X5.... We may ignore the ambiguity in the binary representation of
certain numbers, such as .1000... = .0111... because the set of all such numbers
has zero probability. We choose x; = 0 or 1 with equal probability; then, indepen-
dently, we choose x, =0 or 1 with equal probability; and so on. Indeed, the
self-similar identity (1) expresses this fact succinctly. Note that 3x = .0x,x, ...
and x + 2= .1x,x, ..., and the factors %, 3 on the right side of (1) are the equal
probabilities of choosing 0 or 1 for the first digit. On the left side of (1) we have
the average value of f(x) over the interval, while on the right we have the sum of
the probability of picking 0 or 1 for the first digit multiplied by the average value of
f(x) given that the first digit is 0 or 1.

But there are other ways to pick a number at random. A simple variant of the
uniform distribution is to pick 0 and 1 with probabilities p and 1 — p, for any fixed
p in (0, . This is called a Bernoulli distribution, and we write y, for the associated
probability, so p1,(A4) is the probability that x belongs to a subset 4 of [0, 1] when
x is chosen in this manner. We write [ fdu, for the average value of f (or the
expected value of f) when x is so chosen. When p = 1/2 this is the usual integral.
In general it is a new kind of exotic integral. It satisfies properties (i), (ii), and (iv)
of the integral, but not (iii). In place of (1), we have the self-similar identity

J7(x) du, =pff(%x) dp, + (1 —p)ff(%x + %) . (4)

The explanation for (4) is the same as the explanation for (1) just given, with the
difference that p and (1 — p) are the respective probabilities for the first digit
being 0 or 1.

There is no fundamental theorem of calculus for this integral. As far as I know,
no one knows how to compute [e*dpu, or [sinxdu, or [Vx du,. But we can
compute the integral of polynomials, using the self—similar identity as before. We
start with /1 du, = 1, as this is a property of all averages. Then

1 1 1 1 1-p
fxdup =pf(5x) dp, + (1 —p)[(zx + 5) dp, = E[xd,u,p + 5 fl du,

hence

1 1-p
e = 157
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or
fxd,u,p =1-p.

By the way, notice that we also have

f(l —x)du, =p.

A heuristic explanation for these results is that if p > 1 then the probability gives
more weight to the interval [0, 1], where x takes smaller values and (1 — x) takes
larger values, so fxd,u,p should be less than 3. Next

fxz dp, !

pf(%x)zdy,p + (1 —p)[(%x + E)zd,up

%fxzd,up + (1 —p)(%fxd,up + %/1d”‘p)

e+ -p(30-p 4]

SO
4 1 1y 2 , 1
/‘xzdﬂp=§(1—p)(5(1 —p)+z)=§(1—p) +‘3‘(1—p)

We can continue the process to higher powers, but the expressions become
more and more complicated. It is easy to show that

n .
fx" dp, = ZAnj(]' -p)
j=1

for positive coefficients A,;, where 4,; = (2" — 1)7', and the recursion relations

njs

1 n—1 n
Apj= o7 kgil (k)Aku—l)

hold for 2 < j < n. However, there does not appear to be any explicit formula for
the general coefficient.

6. POLYGASKETS AND OTHER FRACTALS. The familiar Sierpinski gasket SG
(Figure 4) is one of the simplest examples of a self-similar set that is truly fractal.
Just as in the case of the interval, there are subsets of SG that are similar to the
whole. In particular, SG is the union of three similar gaskets of exactly half the
size. We can write a self-similar identity for the set SG in the form K = F{K U
F,K U F3K where F; denotes the contractive similarity Fjx = 3(x — q) +gq; in
the plane with contraction ratio 4 and fixed point g; (s0 x = (x;, x,) denotes a
point in the plane), where ¢, g,, q; are the vertices of an equilateral triangle.
Here the variable K denotes a closed, bounded, non—empty set in the plane. It can
be shown that K = SG is the only solution of this identity. More generally, we can
write self—similar identities

n
K= UEK
j=1

for any finite family of contractive similarities, called an iterated function system.
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Figure 4

The unique solution is called a self—similar set. We concentrate on a family of
examples called polygaskets, obtained as follows. We take the n vertices
415425 - - -» q, Of a regular n—gon, and the contractive similarities F;x = r,(x — g;)
+ g; with fixed—points g;. We choose the contraction ratio r, so that the n images
of the original n—gon just touch. It is an exercise in geometry to show that the
correct value is

sinm/n
r, = = - for m = [n/4].

sinmr/n + sin(7w/n + 2wm/n)
Figure 5 shows the pentagasket, hexagasket, and octagasket, corresponding to
n = 5,6, and 8. Note that the octagons touch along edges rather than at vertices;

Figure 5
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Figure 6

this happens exactly when # is divisible by 4. When n = 2 we get the interval, and
when n = 4 we get the square, as Figure 6 shows.

We want to consider probability measures w on these fractals, and the associ-
ated integrals [fdu for functions f defined on the fractal. Since the fractals are
embedded in the plane we can imagine that f is just given by restricting to K a
function defined on the plane, but it is not necessary that f be defined at points
not in K. The intuition is that [fdu represents the average value of f(x) when x is
chosen at random from K according to the probability distribution. Since K is
self-similar, we would like the probability distribution to be self—similar as well, so
that the probability of choosing a pomt in a subset A of F,K is just proportional to
the probabihty of choosing a point in the corresponding subset which is Fj~ '4, in
K. That is,

w(A) =p;u(F'A) for A cFK.

Here we need to make an important assumption: the overlaps F,K N F, K for
J # k have zero probability. This is true for the polygaskets because these are
either points (n not divisible by 4) or subsets of line segments (n divisible by 4), but
it is not true in general. With this assumption we see that the constants of
proportionality p; must form a set of finite probabilities, so 0 <p; <1 and
py + - +p, =1 to avoid degenerate cases we require p; > 0. Also, we can
combine all n equations into one:

w(A) = Zp] (F'4) for ACF,

called a self-similar identity for the probability measure u. The corresponding
identity for the integral is

[rauw= % p,fre Fya )

This is the analog of our original self—similar identity (1). Informally, this self—sim-
ilar identity says that to find the average value of f on K, take the sum of the
product of the probability p; that a random point x belongs to F;K times the
average value of f on F.K; as x varies over K, Fyx varies over F; K SO [ feFdu
represents this average.

We can iterate (5) just as we did (1), to obtain

wa Zm py, [foFo o F, du. (6)
}1—1 Jm=1

We can again interpret this as a kind of Riemann sum. At each level m, we
partition K into the n™ subsets F; o -+ o F; K, and we assign the weight P, p,
to each subset. The weights play the role of the lengths of subintervals in a usual
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Riemann sum. In (6) the weight is multiplied by the average value of f on the
subset, but we could replace the average by a typical value of f at some point in
the subset, at least for continuous functions f, by taking a limit as m — oo. In fact
this is one way we can define the integral.

For the case of the polygaskets, the most natural choice is to take all the weights
to be equal, p; = 1/n for all j. Then each subset Fj o -~ o F; K at level m is a
little n—gasket contracted by the ratio 7", and given the probab111ty weight 1/n".
Note that the ratio

log(1/n™) log( 1/n)  logn
~ logry logr,  log(1/7,)

is independent of m. We can interpret d as a dimension in the following sense: if
we scale a figure by a factor r, we expect its weight to be scaled by the factor r¢,
where d is its dimension. In fact this value of d coincides with all the usual
dimensions for the polygasket (Hausdorff, box, packing,...), and the self-similar
probability measure with equal weights coincides, up to an unknown constant of
proportionality, with the Hausdorff measure in dimension d.

Just as in the case of the interval, the self-similar identity can be used to
evaluate the integrals of some functions on polygaskets, including any polynomial
function (the restriction to K of a polynomial in 2 variables). The method is exactly
the same. It uses the fact that feo F; is also a polynomial of the same degree,
explicitly computable. Again it is necessary to proceed inductively on the degree of
the polynomial, starting with [1du = 1. If f is the monomial x{'x52, then fo o F is
the sum of rf1**2xk1x%2 and terms of lower degree. Thus (5) yields

n
/x{"x’z‘z du =Y pjr,fl”zfx{‘lxé‘zd,u +1
j=1
where I consists of integrals already computed, and so

/xllxz2 dp = (1 - r,’,‘l”‘l)_ll.

We do not present the details. For general self-similar fractals we can also use
essentially the same method. In cases when the similarities include rotations as
well as homothetic contractions, it is necessary to do the computation simultane-
ously for all monomials of a fixed degree, which leads to a system of linear
equations for the integrals.

This method of integration has been used for polynomial functions for a long
time [7], and has been used for other, more intrinsic functions, in [4] and [6]. For
more information on self-similar fractals, the reader may consult books about
fractals, such as [1] or [2]. There is also a theory of differential calculus on fractals,
but this is more intricate; see [3] or [5].
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From The New Yorker
The question, “Does mathematics need new axioms?,” is ambiguous
in practically every respect.

* What do we mean by “mathematics™?
* What do we mean by “need”?
* What do we mean by “axioms”?

You might even ask, What do we mecan by “does”?>—American
Mathematical Monthly.

“New” apparently speaks for itself.
The New Yorker, May 10, 1999, p. 50

The quotation is the first paragraph of S. Feferman, Does Mathematics Need
New Axioms?, MONTHLY 106 (1999) 99-111.
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