


Analysis on Fractals 

From Manifolds to Fractals 

Analysis on manifolds has been one of the central 
areas of mathematical research in the twentieth 
century. Rooted in the foundational work of the 
nineteenth century, with its rigorous theory of 
multidimensional calculus and the visionary ideas 
of Riemann, it has flowered into a richly layered 
mathematical tapestry. It has attracted mathe

maticians with diverse expertise and points of 
view, including topology, differential equations, 
differential geometry, functional and harmonic 
analysis, and probability theory. This heady mix of 
ideas has produced a vast body of work and a 
seemingly endless supply of challenging problems 

that should keep mathematicians busy well into the 
next century. 

At the same time it has become apparent that 

many phenomena in the real world are best mod
eled by geometric structures that are much more 
irregular. The theory of fractals , as B. Mandelbrot 
[Mal has so forcefully argued, seeks to provide the 
mathematical framework for such development. A 
theory of analysis on fractals is now emerging and 
is perhaps poised for the kind of explosive and mul
tilayered expansion that has characterized analy
sis on manifolds. This article will explain some of 
what has been accomplished and where it might 

lead. 
The central character in the theory of analysis 

on manifolds is the Laplacian. Thus the starting 
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point for analysis on fractals will be the con
struction of an analogous operator on a class of 
fractals. This will not be a genuine differential 
operator, of course, but it will have quite a few of 
the features we have come to expect from anything 
labeled "Laplacian". It will be a local operator, and 
in fact D..f(x) will be a limit in a suitable renor
malized sense of the difference between an 

average value of fin a neighborhood of x and f(x). 
We will be imitating the weak formulation of the 

Laplacian, so that b..u = f will be interpreted to 
mean 

(1) T(u, v) = - J fv dJ1 

for a suitable test class of functions v, vanishing 
on the boundary, where J1 is a measure and T(u, v) 
is a bilinear form called a Dirichlet form. In the man
ifold case, 

(2) 
T(u, v) = J 'Vu · V'v dJ1 = 

f jk au ov ~ 
g (x) oxj oxk -yg(x) dx 

and dJ,l(x) = -Jg(x) dx in local coordinates, where 
{9jk(x)} is a given Riemannian metric, 
g(x) = det{gjk(x)}, and {gjk(x)} is the inverse of 

the matrix {9jk(x)}. In the fractal case the Dirich
let form will come to play the leading role. There 
does not seem to be any canonical measure, and 
the measure on the right side of (1) may be different 

from the one on the right side of (2). There is cer

tainly no analog of the Riemannian metric. It is 
interesting to ask in the manifold case whether or 

not the Dirichlet form determines the metric. The 
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answer is yes 
when the dimen
sion n of 2. When 
n = 2, conformal 
metrics yield the 
same Dirichlet 
form, and there 
is an obstruction 
in passing from 
a positive defi
nite form in the 
gradient to a Rie
mannian metric, 
not present 
when n of 2. 

Figure 1. The Sierpinski gasket. This article 
will describe the 
approach intro

duced by ]. Kigami, which is direct, constructive, 
and easy to explain. It is also possible to use prob
abilistic methods that will indirectly yield the same 
Laplacians. For this approach see M. Barlow [Ba], 
which is also a good source for references in this 
area. Later references to the probabilistic literature 
are found in [HK]. The forthcoming book [Ki3] will 
have an extensive bibliography. Other mathemat
ical developments that might also be described as 
"analysis on fractals" are not described here; for 
example, the function spaces of A. Jonsson and 
H. Wallin [JW] and the work of J. Harrison [H] and 
U. Mosco [Mo]. 

Laplacian on the Sierpinski Gasket 

In order to keep the discussion on a concrete level, 
I will concentrate on the construction of the fully 
symmetric Laplacian on the Sierpinski gasket SG 
(Figure 1), the familiar self-similar fractal generated 
by three contractions Fi in the plane with con
traction ratio 1 I 2 and fixed points at the vertices 
of an equilateral triangle. Its construction will be 
described in more detail below. This was the first 
example considered by ]. Kigami [Kill. who later 
extended the method to a class of fractals called 
"p.c.f." (post-critically finite) [Ki2]. The SG is typi
cal for p.c.f. fractals, but this class is certainly very 
special, and other methods (nonconstructive) for 
producing Laplacians have been presented for 
other fractals. 

Kigami's idea is to approximate the fractal from 
within by a sequence of finite graphs. The Lapla
cian on the fractal is then the renormalized limit 
of graph Laplacians. The same method works on 
the unit interval or the unit square, but we will see 
that there are features of the construction on SG 
that are more reminiscent of the interval than the 
square. In particular, points will have positive ca
pacity. 

In order to figure out the correct renormaliza
tion for the limit, we will construct the Dirichlet 
form first. The sequence of graphs {f m} is easy to 
describe inductively (see Figure 2). fo is just the 
complete graph on the three vertices Vo of the tri
angle, and fm with vertices Vm is obtained from 
fm-1 by applying the contractions Fi to the vertices 
Vm-1. with the edge relation x- y holding if and 
only if X and y are vertices of the same cell 
Fh · · · Fim (S G) of order m. It is clear that the union 
of the vertices V m is dense in SG, so a continuous 
function is determined by its restriction to vertex 
points. It turns out that we can work entirely within 
the class of continuous functions on SG. 

The unit interval can also be obtained as a limit 
of graphs by taking V m to be the dyadic points 
{}2-m: 0 ::o; j ::o; 2m} with edges between consec
utive points. The constructions that follow are 
closely modeled on this example. 

On each graph f m there is a naive Dirichlet form 

Em(f, g) = L (f(x)- f(y))(g(x)- g(y)) 

\;;Y 

but these forms are not related to each other un
less we multiply by the appropriate constants. 
That is, for 

(3) 'Em(f, g)= Cm L (f(x)- f(y))(g(x)- g(y)), 
x;;;y 

we would like the following consistency condition 
to hold: given a real-valued function f defined on 
Vm-1. we want 

(4) 

where f is the extension off to Vm that minimizes 
'Em. We call f the harmonic extension. If we work 
this out form= 1, we find that c1 = (513ko. and 
the harmonic extension f is given by the (2 I 5, 1 I 5) 

law: the value off at a vertex of V1 \ Vo 
is the weighted average off at the ver
tices of Vo with weights 215 for the ad
jacent vertices and 1 I 5 for the oppo
site vertex. In the general case the 
harmonic extension problem is seen to 
be local, so the same (215, 115) law ap
plies on each cell of order m - 1, and 
the same relationship Cm = (513km-l 
holds for the renormalization con
stants. Thus we must have 

Figure 2. The first three graphs fo, f1, f2 approximating the Sierpinski gasket. Cm = (513)mco, and for simplicity we 
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take co = 1. Note that the local harmonic extension 
law is the analog of the fact that a linear function 
on an interval takes on the average value of its end
point values at the midpoint; no such result holds 
for harmonic functions on a square. 

The consistency condition (4) means that for any 
continuous function f on SG, 'Em(f, f) is a mono
tone increasing function of m, so 

(5) 'E(f, f) = lim 'Em(f, f) 
m-oo 

is always defined (in [0, oo ]). We let dam 'E be the 
set of functions fforwhich 'E(f, f) is finite. The con
stants, and only the constants, have zero energy, 
and it is not hard to see that dam 'E modulo con
stants is a Hilbert space with inner product 'E(f, g) 
defined by the same sort of limit as in (5). The en
ergy form satisfies the self-similar identity 

3 

(6) 'E(f,g) = "2J513)'E(f o hg o Fi) 
i=1 

and is symmetric under the 6-element symmetry 
group of the equilateral triangle. 

The three vertices in Vo are, by definition, the 
boundary of SG. Note that every nonboundary ver
tex in Vm has exactly four neighbors in Vm. We de
fine a harmonic function on fm to be one that as
sumes the value at a nonboundary vertex x equal 
to the average of the values at the neighboring ver
tices. A harmonic function on SG is just a contin
uous function whose restrictions to fm are all har
monic. It is uniquely determined by its values on 
the boundary, and its values on V m are obtained 
from its values on V m-1 by the harmonic extension 
(215, 115) law. Thus the space of harmonic func
tions is 3-dimensional. Figure 3 shows the graph 
of a harmonic function. 

To define a Laplacian from the Dirichlet form 
via the weak formulation (1) requires that we 
choose a measure J1 for the right side of (1). There 
is certainly a natural measure on SG, namely the 
self-similar probability measure satisfying 

(7) 

or equivalently 

3 1 
J1 = I 3 J1 0 Fi-1 ' 

i=1 

(8) f f dJ1 = I -31 f f o Fi dJ1. 
SG i=1 SG 

In fact, such an identity determines Jl, and J1 is the 
normalized Hausdorff measure of dimension 
log 3 I log 2 restricted to SG. The measure of each 
of the 3m cells of order m is just 3-m. The iden
tity (8) makes it possible to evaluate many integrals 
exactly (for example, inner products of harmonic 
functions). With this choice of J1 we define 
u Edam~ and ~u = fif u E dom'E, fis continu
ous, and (1) holds for all v E dom'E with v van
ishing on the boundary Vo. This is in fact a useful 
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Figure 3. The graph of a harmonic function on the 

Sierpinski gasket, with boundary values 0, 0, 1 at the 
vertices (0, 0), (1,0), (112, .J314). The function was 
actually plotted just at the points of V7 • 

definition for proving theorems, but a more explicit 
definition is the pointwise formula 

(9) ~u(x) = ~iE1,(312)5m I (u(y) - u(x)) 
y-x 

m 

for any nonboundary vertex point x. The renor
malization factor 5m in (9) is just the product of 
(513)m in (3) divided by the factor (113)m from the 
measure Jl. The relatively unimportant constant 
3 I 2 arises because vertices in V m do not corre
spond exactly to sets of measure (1 I 3)m. The exact 
theorem [Kill is that u Edam~ if and only if the 
limit in (9) exists unifonnly. Note that (9) is, as 
promised, a renormalized limit of graph Lapla
cians, but the renormalization constant 5m cannot 
be explained by any superficial dimension argu
ments. Of course (9) exhibits ~u as a limit of dif
ference quotients and shows the local nature of this 
Laplacian: ~u(x) depends only on the values of u 
in any neighborhood of x. But (9) is valid only for 
vertex points, and although these points are dense 
in SG, they are a set of measure zero for J1 and are 
far from being typical points. From (9) it is not hard 
to show that a function h is harmonic if and only 
if ~h = 0. 

There is a version of the Gauss-Green formula 
valid for this Laplacian. Not only is this an inter
esting result in itself, but also it is an important 
technical tool. To state the result we need to de
fine normal derivatives at the boundary points 

x E Vo: 

<Io) onf<x) = ~i!f1(513)m I <f<y) - r<x)). 
y-x 

m 
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Figure 4. The values of an eigenfunction on f3 with 
eigenvalue ,\3 = 5, identically zero on two ofthe three 

cells of order 1. 

Note that there are exactly two neighboring points 
when x E Vo. The limit exists when f is in dom ~. 

Theorem 1. (Gauss-Green Formula). Ifu and v are 
in dom~. 

f (u~v- v~u)dJl = 
SG 

(11) 
L ( u(x)on v(x) - v(x)on u(x)). 

XEVo 

There is also a Green's function G(x, y) for solv
ing 

(12) ~u=f, ul =0 
Vo 

uniquely via 

(13) u(x) = J G(x, y)f(y) dJi(y). 
SG 

The Green's function is continuous, symptomatic 
of the fact that points have positive capacity. There 
is an explicit formula for G that we omit here. 

Eigenfunctions and Spectral Decimation 

With the definition of the Laplacian in place, it is 
possible to consider analogs of the classical equa
tions involving the Laplacian. We have already 
mentioned harmonic functions, for which there ex
ists a simple and effective local extension algo
rithm. The harmonic functions are the analogs of 
linear functions on an interval. Similarly, the eigen
functions of the Laplacian 

(14) 

are the analogs of sines, cosines, and exponentials. 
By imposing eitherDirichlet(flv0 = 0) or Neumann 
(onflvo = 0) boundary conditions on solutions of 
(14), we obtain a discrete family of Dirichlet(or Neu
mann) eigenfunctions, with eigenvalues forming a 
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discrete Dirichlet (or Neumann) spectrum. More
over, arbitrary functions may be expanded in 
infinite series of either type of eigenfunctions, 
giving the analog of Fourier sine and cosine series. 
The spectrum was first studied by the physicists 
R. Rammal and G. Toulouse in 1983 and 1984. In 
1992 M. Fukushima and T. Shima gave a mathe
matical description of eigenvalues and eigenfunc
tions. Many illustrations can be found in [DSV]. 

The eigenfunctions may in fact be computed via 
an effective local extension algorithm. To see what 
this should be like, we observe that the function 
sin rr kx on the unit interval is an eigenfunction not 
only of the differential operator d 2 I dx2 but also 
of the symmetric second difference operator 

(15) ~~f(x) = h-2 (f(x +h)+ f(x- h)- 2f(x)), 

with eigenvalue 2h-2(cos rrkh - 1) that tends to 
-(rrk)2 as h- 0. Thus, if we let Vm denote the 
dyadic points j2- m in the unit interval, the eigen

functions of~~ with h =2-m on Vm are restrictions 
to V m of eigenfunctions of d 2 I dx2 , and we obtain 
the whole Dirichlet spectrum (with the correct 
eigenvalues) in the limit as m- oo. Moreover, there 
is a bifurcation of eigenfunctions as we extend 
from Vm to Vm+l· If we startwithf(x) =sin rrkx on 
Vm with 1 :$ k <2m -1, we can extend f to Vm+l 
as either sin rrkx or sin rr(k + 2m)x, giving differ
ent eigenfunctions with different eigenvalues. Here 
we can begin the whole process with the single 
Dirichlet eigenfunction sin TTX on vl. 

The story is quite similar on SG. Aside from a 
few complications, every eigenfunction 

(16) 

of the graph Laplacian 

(17) ~mfm(X) = L (f(y) - f(x)) 
Y;;;x 

on fm can be extended by an explicit local algorithm 
in two distinct ways to an eigenfunction fm+l on 
fm+l with eigenvalue A.m+l, where the eigenvalues 
are related by the quadratic equation 

Furthermore, eigenfunctions of ~ on SG arise by 
taking limits as m - oo. What is new is that the 
process needs to be started at different levels. 
Eigenvalues can have high multiplicity (much higher 
than is suggested by the 6-element symmetry 
group), and the eigenfunctions can be completely 
localized. For example, Figure 4 shows the values 
of an eigenfunction on f3 with eigenvalue ,\3 = 5. 
By extending this function and passing to the limit, 
we obtain a Dirichlet eigenfunction on SG that van
ishes identically on two of the three cells of order 
1. This means that there are solutions to the heat 
equation or wave equation on SG for which the heat 

VOLUME 46, NUMBER 10 



(or vibration) never escapes from a small cell. This 
is perhaps not so surprising in view of the topo
logical structure of SG, where single junction points 
(the vertices in Vm) control the connection be
tween neighboring cells, and any signal with an odd 
symmetry in a neighborhood of such a junction 
point will not get past. Another peculiar feature of 
the eigenfunctions on SG is that they may assume 
a constant value along a line segment. For exam
ple, the ground state Dirichlet eigenfunction (Fig
ure 5) assumes its maximum value along the whole 
inverted triangle connecting the nonboundary ver
tices in vl. 

As a consequence of this description of eigen
values called the spectral decimation method, the 
spectrum (Dirichlet or Neumann) satisfies a Weyl 
asymptotic law with a dimension ds = 2log 3 I log 5 
known as the spectral dimension. The example of 
SG is a bit special, since the spectral decimation 
method works only for a very limited class of frac
tals.]. Kigami and M. Lapidus established the Weyl 
asymptotic law in full generality using different 
methods in 1993. 

Heat and Wave Equation 

Using the Laplacian~ on SG for the space part, we 
can consider space-time heat and wave equations 
Ut = ~u and Utt = ~u for u(x, t) a function on 
SG x [0, oo). The heat equation may also be con
sidered as the diffusion equation for a stochastic 
process that may be described as Brownian motion 
on SG, with ~ as its infinitesimal generator. It is 
possible to give an independent description of 
this Brownian motion, and in fact this predates the 
explicit constuction of the Laplacian we have de
scribed. The heat kernel then describes the tran
sition probabilities for the process. 

Estimates for the heat kernel of the expected 
Gaussian type have been obtained by B. Hambly and 
T. Kumagai [HK], and there are some interesting 
features. The dimension that appears in the on
diagonal estimates is the spectral dimension ds. 
The distance that appears in the off-diagonal es
timates is not the Euclidean distance. This should 
not be too surprising, since the geometry that 
comes from the embedding of SG in the plane 
plays no role in the construction of the Laplacian. 
The distance that is relevant is the intrinsic resis
tance metric. If we regard the graphs fm as elec
tric circuits, with the edges consisting of resistors 
whose resistance is the reciprocal of the conduc
tance constant Cm, then the effective resistance be
tween vertices is independent of m and by conti
nuity yields a metric on SG. Another way to describe 
this metric dR(X, y) is as the infimum of the energy 
of a function f that satisfies f(x) = 0 and f(y) = 1. 
The intrinsic resistance metric is not exactly self
similar, but asymptotically it scales by a ratio of 
3 I 5 with each contraction. Thus cells of order m 
have diameter approximately (3 1 5)m. 

NOVEMBER 1999 

Figure 5. The graph of the ground-state Dirichlet 
eigenfunction on the Sierpinski gasket. This function 
is strictly positive on the interior and achieves its 
maximum value of 1 everywhere on the principal 
interior triangle. The function has .\.1 = 2. Form ::e: 1, 
Am+l is (112)(5- .)25- 4.\.m), the negative square root 
being chosen at each stage. 

An interesting connection between the intrinsic 

resistance metric and the spectral dimension is the 
formula 

where dH denotes the Hausdorff dimension in this 
metric. 

The wave equation presents another surprise: 
there is no finite propagation speed. This can be 
explained in terms of a mismatch between the 
scaling properties of the second time derivative 
(factor of 4) and the Laplacian (factor of 5). If we 
were to construct a "Sierpinski harp" by wiring 
strings along the edges of fm and coupling the 
strings appropriately at the vertices in Vm, we 
would need to increase the tension on the strings 
as m increases in order to obtain in the limit a 
model for wave propagation on SG. As every mu
sician knows, increasing tension increases pitch, 
but the reason behind the increase in pitch is that 
the speed of propagation increases. Thus, for large 
m a vibration can travel along the edge of the harp 
at high speed. However, most of the energy of the 
vibration will not discover this potential super
highway but instead will get snarled in the local 
traffic of the convoluted connections in the graph 

fm. In the limit, small amounts of energy can travel 
at arbitrarily large speed. From a scaling perspec
tive, vibrations appear to travel faster on a smaller 
scale. 
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The unbounded propagation speed seems to 
defy basic physical principles, but the resolution 
of this problem is simply that true fractals do not 
exist in nature. Once one gets to the molecular level, 
a different model is needed. Nevertheless, objects 
that have a fractal structure at several scales may 
often still be profitably modeled by fractals. 

Numerical Analysis 

Where exact solutions to fractal differential equa
tions are unavailable, a number of techniques for 
finding approximate solutions are known. One 
rather obvious method, the analog of the finite
difference method, is to use sm D.m on fm as an ap
proximation to .0. on SG. This method was used for 
the space components in the heat and wave equa
tions in [DSV]. It is also possible to develop an ana
log of the finite-element method by constructing 
spline spaces [SU]. The analog of the space of poly
nomials of degree at most 2j + 1 on an interval is 
the space J{j of multiharmonic functions satisfy
ing D,i+1u = 0. By using the Green's function rep
resentation (13) it is possible to give effective local 
algorithms for computing multiharmonic func
tions, starting from the boundary data 

(19) 
k ~ j/2, 

k < j/2. 

We then define spline spaces SmJ{j of functions 
that are piecewise in J{j on each of the 3m cells 
of order m and that satisfy matching conditions 
at the nonboundary vertices in V m corresponding 
to the data (19). The spline space SmJfo is just the 
space of continuous piecewise harmonic functions 
at level m. By taking higher values of j we allow 
the splines to be "smoother". 

To find the finite-element approximation to the 
solution of (12), for example, we choose values for 
j and m and take the subspace of SmJ{j satisfy
ing the boundary condition ulv0 = 0. The approx
imate solution is the function in this space satis
fying the integrated equation (1) for all v in this 
space. By choosing a natural basis for this space 
we obtain a sparse system of linear equations. The 
values of 'E(u, v) can be computed theoretically, but 
the right side of (1) requires numerical integration. 
The spline spaces may be used also to develop ef
ficient numerical integration methods analogous 
to Simpson's method. They are also useful for cut
ting and pasting operations on functions. A ver
sion of the finite-element method implemented 
by M. Gibbons and A. Raj may be found at 
http://mathlab.cit.cornell.edu/-gibbons/. 

Taylor Approximations 

It would be difficult to convince a calculus student 
that the second derivative is the more basic con
cept and the first derivative is a subordinate no-
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tion. Yet that is the situation we are in at this stage 
of the development of calculus on SG. In fact, there 
is no completely satisfactory analog of the gradi
ent, although I will describe two distinct ap
proaches to the problem. On an interval the tan
gent line is defined by the local approximation of 
a differentiable function by linear functions. This 
is the first of the sequence of Taylor polynomial 
approximations, involving higher derivatives, for 
functions with greater smoothness. The first de
rivative and also the higher derivatives appear as 
coefficients of the Taylor polynomials. On SG the 
analogs of linear functions are harmonic func
tions, and the analogs of polynomials are the mul
tiharmonic functions. These are the functions that 
should serve as local approximations to a general 
"differentiable" function, and the coefficients iden
tifying the approximation should serve as com
ponents of various derivatives of the function. 
With some luck, one may also compute the deriv
atives as limits of difference quotients. 

The situation turns out to be more complicated 
for three reasons. First, the results are different at 
the special vertex points in Vm and at generic 
points, where the theory is somewhat incomplete. 
Second, at a vertex point the approximation rate 
that characterizes the Taylor approximation must 
be described by two different estimates, a faster 
rate for the odd part and a slower rate for the 
even part (hence overall). Third, the region where 
the approximation takes place is limited by the 
geometry of the point regardless of the function. 

To describe the situation in more detail, we 
begin by defining a tangential derivative Zhf(x) at 
boundary points x E Vo to go along with the nor
mal derivative defined by (10): 

(20) 0Tf(x) = lim 5m(f(am) - f(bm)), 
m-oo 

where am and bm are the two neighbors of x in V m· 

The limit exists if fis in domD.. Next we localize 
both derivatives to the cells of order m whose 
boundary points are the vertices in Vm. Each non
boundary vertex xo is a boundary point for two 
such cells, and so there are four derivatives defined 
at xo. However, under reasonable assumptions, 
such as f E dom .0., the two normal derivatives are 
related: in fact, they sum to 0. The two tangential 
derivatives are independent however. So we can de
fine a gradient of f at xo consisting of three com
ponent derivatives. This leads to an embarrassing 
dimensional miscount, since we have four numbers 
(the value of the function at xo plus the three de
rivatives) to match a harmonic function, and the 
space of harmonic functions is only 3-dimensional. 
The resolution of this paradox is that we should 
try to match only a local harmonic function, not a 
global harmonic function. The point xo has a nat
ural system of neighborhoods Um(Xo) consisting 
of pairs of adjacent cells of order m meeting at xo. 
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Here we must require that m be sufficiently large 
so that xo E V m. Each of these neighborhoods has 
exactly four boundary points, and there is a 4-di
mensional space of local harmonic functions on 
Um(xo). The first Taylor approximation to fat xo 

is defined to be the local harmonic function h that 
matches the values of f and its three derivatives 
at xo. Note that the domain of definition of his lim

ited by the geometry of xo alone. 
Next we describe the local approximation prop

erties of h. We define a reflection symmetry R in 
Um(xo) that fixes xo and reflects each cell to itself 
through the angle bisector of xo. (Here R does not 
permute the two cells.) The overall estimate takes 
the form 

(21) lf(x)- h(x)l = o((315)m) for x E Um(Xo), 

while the estimate for the odd part is 

(22) l(f(x)- f(Rx)) - (h(x) - h(Rx))l = o((115)m) 

for x E Um(xo). It is not hard to show that at most 
one local harmonic function can satisfy (21) and 
(22) and that if such a local harmonic function ex
ists, then its derivatives at xo must match the cor
responding derivatives of f at xo. In addition, 
f(xo) = h(xo). The following existence theorem is 
proved in [S]: 

Theorem 2. Suppose f is in dom(~) and ~f satis

fies a Holder condition of any positive order. Then 

for each vertex point xo there exists a local harmonic 

function h satisfying (21) and (22). 

There are analogous statements involving 
higher-order Taylor approximations by local mul
tiharmonic functions with better estimates, under 
assumptions that f belongs to the domain of a 
power of ~- The occurrence of a power of 3 I 5 in 
(21) and (10) is a consequence of the fact that 
Cm = (5 I 3)m in (3). However, the power of 5 that ap
pears in (22) and (20) is just coincidentally the 
same as the power of 5 that appears in (9). This 
coincidence is related to the additional hypothe
sis of Holder continuity required in Theorem 2. 

The story for local approximation at a generic 
point xo is quite different. If we specifically assume 
that xo does not belong to any V m. then xo belongs 
to a unique cell u:n(xo) of order m, and this gives 
a natural system of neighborhoods of xo. Each cell 
has three boundary points, and local harmonic 
functions on the cell are determined by the values 
at these boundary points. In fact, each local har
monic function is the restriction of a unique global 
harmonic function, and the extension and restric
tion are easily described in terms of three matri
ces M; and their inverses M;-1. The restriction from 
SG to F; (SG) of a harmonic his given by 

(23) 
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where 

(24) 
0 

215 

115 
1~5) 
215 

andMz andM3 areobtainedfromM1 bycyclicper
mutations of indices. The restriction to the cell 
F;1 • • • F;m(SG) is then given by 

(25) ho(F1• • • ·F1• )I =M1· · · ·M1· hi 
I m Vo m I Vo' 

and the extension is the inverse relation 

(26) h I = M :-1 ... M :-1 h 0 (F; . .. F; ) I . 
Vo II 1m I m Vo 

Now if a nonvertex point xo is given, the neigh
borhood system u:n(xo) corresponds to a unique 
sequence {iJ} . We let hm denote the harmonic 
function that matches f at the three boundary 
points of u:n(xo) . By (26) this means 

(27) hm I = M:-1 · · · M:-1 f o (F; · · · F; ) I . Vo 11 lm 1 m Vo 

If the limit exists as m - oo, we call the harmonic 
function h = lim hm the first-order Taylor ap-

m-oo 
proximation to fat xo . Using H. Furstenberg's 1963 
theory of products of random matrices, [S] shows 
that for JJ-almost every point xo, the first-order Tay
lor approximations at xo exist for every f E dom ~, 
and the estimate 

(28) lf(x)- h(x) l = 0({3m) for X E u:n(xo) 

holds for {3 > f3o. Moreover, the estimate (28) 
uniquely characterizes the harmonic function h. 

The value of the constant f3o in (28) can only be 
estimated. 

Energy Measures 

Since the Dirichlet form 'E(u, v) is the analog of 
f 'V u · 'Vv dJ1, it is tempting to look for the analogs 
of both 'Vu · 'Vv and dx within it. In fact, there is 
a standard procedure for associating a measure 
Vu,v to every u, v E dom 'E (positive when u = v) 
such that 

(29) 'E(u , v) = J dvu,v· 

In this case the simplest way to describe vu,v is to 
take for Vu,v(A ), when A is any simple set, the same 
limit that defines 'E(u, v), but restricting the sums 
in 'Em(u, v) to points in A. If we can find a posi
tive measure v with the property that Vu,v is ab
solutely continuous with respect to v for all 
u, v E dom 'E, then we can write 

(30) Vu,v = [(u, v) dv 

for the appropriate Radon-Nikodym derivative 
[(u, v). Here fis called the cam!. du champs oper
ator. S. Kusuoka in 1989 showed that (30) holds 
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Figure 6. The pentagasket (top), 

hexagasket (middle), and octagasket 

(bottom). 

with the choice of 

V = Vh1,h1 + Vh2,h2• 

where {h1, h2} is an 
orthonormal basis 
for the harmonic 
functions mod con
stants in the energy 
inner product. We 
refer to Vf,g as en
ergy measures and 
v as the Kusuoka 

measure. A perhaps 
surprising observa
tion is that the 
Kusuoka measure 
and hence all the 
energy measures 
are singular with re
spect to the self
similar measure J.1 

defined by (7) and 
(8) that we used in 
the construction of 
the Laplacian! We 
can think of [(u, v) 
as the analog of 
'Vu·'Vv, but we 
must keep in mind 
that f(u, v) is de
fined only almost 
everywhere with re
spect to v. It is not 
clear whether there 
is any meaningful 
way to define 'Vu 

so that f(u, v) = 
'Vu · Vv. 

The singularity 
of the Kusuoka 
measure has an
other disquieting 
consequence: mul
tiplication is for
bidden in dom(~) . 

Specifically, if 
u E dom(~) is not 
constant, then u2 is 
not in dom(~). This 
can be explained by 
the putative identity 

(31) ~u 2 = 2u~u + 'Vu · 'Vu, 

which can be interpreted correctly only in terms 
of measures [EST]. A different explanation can be 

based on the incommensurability of the different 

approximation rates in the local Taylor approxi

mation. If f is in dom(~) and xo is a vertex point 
where onf(xo) =I 0, then the rate of convergence of 

f(x) to f(xo) is bounded above and below by a mul
tiple of (3/S)m on Um(xo) \ Um+l(xo). Then 

NOTICES OF THE AMS 

(f(x) - f(xo))2 converges to 0 too rapidly to have 

nonzero normal derivative. But it also converges 

to 0 too slowly to have normal derivative equal to 

0, for that implies a rate of at least m(l I S)m. 

The impossibility of multiplication is a serious 

obstacle to the interpretation of the domains of~ 

and powers of ~ as spaces of smooth functions. 

Perhaps that is just the nature of things. Another 

possible response is to study a different Laplacian, 

constructed by taking the Kusuoka measure on the 

right side of (1). This eliminates the problem of mul

tiplication and enables us to make perfect sense 

out of (31). But it has the disadvantage that vis 
not self-similar, so computations with this Lapla

cian will not be independent of scale. Certainly 

when dealing with physical models, one will not 

have the luxury of choosing a measure at will if the 

measure is to have the interpretation of mass dis

tribution. 
Here is an entertaining diversion concerning 

the Kusuoka measure. Suppose we carry out the 

same procedure for the standard Dirichlet form 

f I '\7 u 12 dx on the unit disc. In this case there is an 

infinite orthonormal basis {hi} of harmonic func

tions modulo constants in this inner product, and 

we would take 

(32) 

00 

v = L 1Vhi(x)l 2 dx, 
i;l 

the sum being independent of the choice of or

thonormal basis. The computation of vis straight

forward but lengthy, and the result is a multiple 

of the Riemannian measure associated to the hy

perbolic metric on the disc. This should come as 

no surprise, since we have already observed that 

the Dirichlet form in two dimensions is a confor

mal invariant, so we might as well start out by work

ing in the hyperbolic metric. Then the Mobius 

transformations of the disc are isometries, and v 

must be Mobius invariant (because composing the 

orthonormal basis with a Mobius transform pro

duces another orthonormal basis). Up to a constant 

multiple, there is a unique <T-finite Mobius invari

ant measure. 

P.C.F. Self-Similar Fractals 

Kigami [Ki2] has described a class of fractals called 

post-critically finite (p.c.f.), for which a similar the

ory of Dirichlet forms and Laplacians may be con

structed, provided a certain algebraic problem can 

be solved. In the interest of simplicity I will describe 

a more limited class of fractals that seems to con

tain all the interesting examples. The key property 

of SG that we want to maintain is that it is con

nected, but just barely: the removal of a finite 

number of points makes it disconnected, so these 

junction points control all access from one point 

of the set to another. These fractals are often re

ferred to as finitely ramified. 
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We will work within the class of self-similar 
sets in JR". A self-similar set is defined to be the 
unique nonempty compact set K satisfying 

N 

(33) K= UFiK 
i=1 

for a family {Fi} of contractive similarities. The crit
ical set C is defined to be the set of all intersec
tion points FiK n FjK for i ~ j, and the post-criti
cal set P is defined to be the pre-images of C under 
the mappings Fi and their iterates. The p.c.f. as
sumption we make is that P is a finite set, and by 
definition it is the boundary of K. 

To get a feeling for what is and is not in a p.c.f. 
fractal, consider the class of polygaskets, which are 
constructed from a regular N -gon in the same way 
that SG is constructed from a triangle. We adjust 
the contraction ratio for Fi (with fixed points the 
vertices of the N -gon) so that the images just 
touch. When N is not divisible by 4, the image N

gons touch at single vertices, and we obtain a p.c.f. 
fractal with P equal to theN vertices of the origi
nal N -gon. But when 4 divides N, the intersections 
are infinite (for N = 4 we obtain a square). Figure 
6 shows the pentagasket and hexagasket, which are 
p.c.f., and the octagasket, which is not. 

For a p.c.f. fractal K we define cells of order m 
to be images Fi1 • • • FimK, and we define graphs fm 

by taking Vo = P, 

N 

Vm = UFiVm-1, 
i=1 

and the edge relation x ~ y if x and y belong to 
m 

the same cell. The intersections of distinct cells con-
sist of vertices in Vm, but not all nonboundary 
vertices are such junction points (see the penta
gasket and hexagasket, for example). We want to 
construct a Dirichlet form 'E on K that is again the 
limit of Dirichlet forms 'Em on fm, but we can no 
longer rely on the simple formula (3). For 'Em, the 
expression 

(34) 'Em(f, f)= I c(x, y)(f(x) - f(y))2 

x;;;y 

with rather arbitrary positive coefficients c(x, y) 

would be allowable, but this is too general. What 
we want is a self-similarity condition on the se
quence {'EmL 

N 

(35) 'Em(f,f) =I ri- 1'Em- 1(f 0 hf ° Fd 
i=1 

for certain positive coefficients { n } , that will trans
late into the self-similarity identity 

N 

(36) 'E(f,f)= Iri- 1'E(foFi,f o Fi) 
i=1 
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in the limit. We will continue to require the con
sistency condition (4) as well. The following theo
rem is proved in [Ki2]. 

Theorem 3. Suppose there exist 'Eo onfo ofthe form 
(34) and coefficients {n} such that if we use (35) to 
define 'E 1, then ( 4) holds for m = 1. Then if we use 
(35) to define 'Em inductively, the consistency con
dition (4) holds for all m. In the case that n < 1 for 
all i, the limit 'E defines a local Dirichlet form whose 
domain is contained in the continuous functions on 
K, and (36) holds. 

In other words, the whole construction suc
ceeds provided it succeeds at the first step. Of 
course, the algebraic problem of finding the coef
ficients for 'Eo and the coefficients {n} is 
nontrivial, and there is still no general existence 
theorem, although C. Sabot in 1997 and T. Und
stmm in 1989 have resolved the problem in some 
cases. Generally speaking, one expects that there 
is a continuum of solutions. 

For the construction of a Laplacian from the 
Dirichlet form via (1), it is not necessary to choose 
a self-similar measure for J1. It is enough to have 
a finite measure that gives positive values to all 
nonempty open sets. Many of the results discussed 
above for SG extend to p.c.f. fractals, with appro
priate modifications and hypotheses. One new fea
ture that does not show up in the SG example is 
that the matrices Mi that occur in the analog of (23) 
for restricting harmonic functions are not always 
invertible, so that the extension of harmonic func
tions given by (2 7) is not always possible. In par
ticular, harmonic functions may be locally con
stant but not globally constant. 

Challenges for the Future 

This article has described some of the develop
ments that have taken us quite far for a relatively 
narrow class of fractals, and further progress can 
be expected. There are some hints that these frac
tals have something in common with manifolds of 
positive curvature, although there is no obvious 
candidate for curvature in this context. A Liouville 
theorem holds for certain noncompact "blow-ups" 
of these fractals, and in the manifold case this re
quires a nonnegative curvature assumption. 

However, an important challenge for the future 
is to extend the theory beyond the finitely rami
fied context. There are Brownian-motion-type 
processes on other fractals, notably some "Sier
pinski carpets", and the infinitesimal generators 
give, indirectly, Laplacians. It is not clear what the 
natural class of fractals is for which this approach 
will succeed, and it is also not clear how much fur
ther information can be obtained in this mainly 
nonconstructive setting. 

It should also be possible to go beyond the self
similar context. Of course, it is easier to work with 
structures obtained by iterating the same 
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construction, but it is the hierarchical structure on 
different scales that seems to be essential to the 
current theory. Perhaps what is needed is a con
cept of fractafold, the fractal analog of the concept 
of manifold. 
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About the Cover 

The Sierpinski gasket is the connected sub
set of the plane obtained from an equilateral 
triangle by removing the open middle inscribed 
equilateral triangle of 1/4 the area, removing 
the corresponding open triangle from each of 
the three constituent triangles, and continuing 
this way. The gasket can also be obtained as 
the closure of the set of vertices arising in this 
construction. The cover shows the vertices of 
the constituent triangles through seven itera
tions of constructing midpoints. The vertices 
are color coded according to the stage at which 
they first appear, the last three stages being 
red, orange, and yellow. The vertices have been 
increased in size from points to small disks to 
give the illusion of connectedness for the dis
played finite set of vertices. 

- Peter Sykes 
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