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Abstract

Drawing on the correspondence between the graph Laplacian, the
Laplace-Beltrami operator on a manifold, and the connections to
the heat equation, we propose a geometrically motivated algorithm
for constructing a representation for data sampled from a low di-
mensional manifold embedded in a higher dimensional space. The
algorithm provides a computationally efficient approach to non-
linear dimensionality reduction that has locality preserving prop-
erties and a natural connection to clustering. Several applications
are considered.

In many areas of artificial intelligence, information retrieval and data mining, one
is often confronted with intrinsically low dimensional data lying in a very high di-
mensional space. For example, gray scale n x n images of a fixed object taken with
a moving camera yield data points in ]P However, the intrinsic dimensionality of
the space of all images of the same object is the number of degrees of freedom of
the camera in fact the space has the natural structure of a manifold embedded in

While there is a large body of work on dimensionality reduction in general,
most existing approaches do not explicitly take into account the structure of the
manifold on which the data may possibly reside. Recently, there has been some
interest (Tenenbaum et al, 2000; Roweis and Saul, 2000) in the problem of devel-
oping low dimensional representations of data in this particular context. In this
paper, we present a new algorithm and an accompanying framework of analysis for
geometrically motivated dimensionality reduction.

The core algorithm is very simple, has a few local computations and one sparse
eigenvalue problem. The solution reflects the intrinsic geometric structure of the
manifold. The justification comes from the role of the Laplacian operator in pro-
viding an optimal embedding. The Laplacian of the graph obtained from the data
points may be viewed as an approximation to the Laplace-Beltrami operator defined
on the manifold. The embedding maps for the data come from approximations to
a natural map that is defined on the entire manifold. The framework of analysis
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presented here makes this connection explicit. While this connection is known to
geometers and specialists in spectral graph theory (for example, see [1, 2]) to the
best of our knowledge we do not know of any application to data representation
yet. The connection of the Laplacian to the heat kernel enables us to choose the
weights of the graph in a principled manner.

The locality preserving character of the Laplacian Eigenmap algorithm makes it rel-
atively insensitive to outliers and noise. A byproduct of this is that the algorithm
implicitly emphasizes the natural clusters in the data. Connections to spectral clus-
tering algorithms developed in learning and computer vision (see Shi and Malik,
1997) become very clear. Following the discussion of Roweis and Saul (2000), and
Tenenbaum et al (2000), we note that the biological perceptual apparatus is con-
fronted with high dimensional stimuli from which it must recover low dimensional
structure. One might argue that if the approach to recovering such low-dimensional
structure is inherently local, then a natural clustering will emerge and thus might
serve as the basis for the development of categories in biological perception.

i The Algorithm

Given k points x1,.. , xj in 11V, we construct a weighted graph with k nodes, one
for each point, and the set of edges connecting neighboring points to each other.

1. Step 1. [Consirnciing the Graph] We put an edge between nodes i and j if
x and n are "close". There are two variations:

c-neighborhoods. [parameter e E IR] Nodes i and j are connected by an
edge if Hxi - xjM2 < e.
Advantages: geometrically motivated, the relationship is naturally
symmetric.
Disadvantages: often leads to graphs with several connected compo-
nents, difficult to choose e.
n nearest neighbors. [parameter n E N] Nodes i and i are connected by
an edge if i is among n nearest neighbors of i or i is among n nearest
neighbors of i.
Advantages: simpler to choose, tends to lead to connected graphs.
Disadvantages: less geometrically intuitive.

2. Step 2. [Choosing the weights] Here as well we have two variations for
weighting the edges:

(a) Heat kernel. [parameter t E IR]. If nodes i and i are connected, put

= e

The justification for this choice of weights will be provided later.
(b) Simple-minded. [No parameters]. Wj = i if and only if vertices i and

i are connected by an edge.
A simplification which avoids the necessity of choosing t.

3. Step 3. [Eigenmaps] Assume the graph G, constructed above, is connected,
otherwise proceed with Step 3 for each connected component.
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Figure 1: The left panel shows a horizontal and a vertical bar. The middle panel
is a two dimensional representation of the set of all images using the Laplacian
eigenmaps. The right panel shows the result of a principal components analysis
using the first two principal directions to represent the data. Dots correspond to
vertical bars and '+' signs correspond to horizontal bars.

Compute eigenvalues and eigenvectors for the generalized eigenvector prob-
lem:

Ly=\Dy (1)

where D is diagonal weight matrix, its entries are column (or row, since
W is symmetric) sums of W, D > Wj. L D - W is the Laplacian
matrix. Laplacian is a symmetric, positive semidefinite matrix which can
be thought of as an operator on functions defined on vertices of G.

Let yo, . . . , yi be the solutions of equation 1, ordered according to their
eigenvalues with Yo having the smallest eigenvalue (in fact O). The image
of x under the embedding into the lower dimensional space 11m is given by
(yi(i),... , ym(i)).

2 Justification

Recall that given a data set we construct a weighted graph G = (V, E) with edges
connecting nearby points to each other. Consider the problem of mapping the
weighted connected graph G to a line so that connected points stay as close together
as possible. We wish to choose Yi E IR to minimize

-

under appropriate constraints. Let Y = (1/i, 1/2, y) be the map from the graph
to the real line. First, note that for any y, we have

- yj)Wjj YTLY (2)

where as before, L = D - W To see this, notice that Wj is symmetric and

= W.j. Thus - y)2Wj can be written as

(y + 1/Y - 2yy)W = yDj + yYDj - 2yy = 2YTLY

i ,j
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Figure 3: Fragments labeled by arrows in figure 2, from left to right. The first
contains infinitives of verbs, the second contains prepositions and the third mostly
modal and auxiliary verbs. We see that syntactic structure is well-preserved.

Therefore, the minimization problem reduces to finding argmin),TD_lyTLy.

The constraint yTDy = i
removes an arbitrary scaling
factor in the embedding. Ma-
trix D provides a natural
measure on the vertices of the
graph. From eq. 2, we see
that L is a positive semidef-
mite matrix and the vector
y that minimizes the objec-
tive function is given by the
minimum eigenvalue solution
to the generalized eigenvalue
problem Ly = )Dy.

Let i be the constant func-
tion taking value i at each
vertex. It is easy to see that i is an eigenvector with eigenvalue O. If the graph
is connected, i is the only eigenvector for .À O. To eliminate this trivial solu-
tion which collapses all vertices of G onto the real number 1, we put an additional
constraint of orthogonality to obtain

Yopt = argminTDl YTLY
yTD1=O

Thus, the solution Yopt is now given by the eigenvector with the smallest non-zero
eigenvalue. More generally, the embedding of the graph into Rtm (m > 1) is given
by the n x m matrix Y = [Y1Y2 . . Ym] where the ith row, denoted by yT, provides
the embedding coordinates of the ith vertex. Thus we need to minimize

- jj2W - tr(YTLY)

This reduces now to

Yop, = argminyTy1 tr(YTLY)
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Figure 2: 300 most frequent words of the Brown
corpus represented in the spectral domain.
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For the one-dimensional embedding problem, the constraint prevents collapse onto
a point. For the rn-dimensional embedding problem, the constraint presented above
prevents collapse onto a subspace of dimension less than rn.

2.1 The Laplace-Beltrami Operator

The Laplacian of a graph is analogous to the Laplace-Beltrami operator on mani-
folds.
Consider a smooth rn-dimensional
manifold M embedded in

k The Riemannian struc-
ture (metric tensor) on the
manifold is induced by the
standard Riemannian struc-
ture on I. Suppose we have
amapf:MIR.Thegra-
dient Vf(s) (which in local
coordinates can be written as
Vf(s) = -ô) is a
vector field on the manifold,
such that for small s (in a
local coordinate chart)

Figure 4: 685 speech datapoints plotted in the two
dimensional Laplacian spectral representation.

f(s + s) - f(s)I I(Vf(s), 's)I IVfII Ik5I

Thus we see that if IV! is small, points near s will be mapped to points near
f(s). We therefore look for a map that best preserves locality on average by trying
to find

argmin11j112_1
IM

IIVf(s)112

Minimizing f IIVf(s)112 corresponds directly to minimizing Lf = -
f)2W on a graph. Minimizing the squared gradient reduces to finding eigen-

deffunctions of the Laplace-Beltrami operator f. Recall that L = divV(f) , where
div is the divergence. It follows from the Stokes theorem that div and V
are formally adjoint operators, i.e. if f is a function and X is a vector field
IM (X, Vf) = IM div(X)f. Thus

/ IIVfII2 = / r(f)f
JM IM

We see that L is positive semidefinite and the f that minimizes IM IVI 112 has to
be an eigenfunction of L.

2.2 Heat Kernels and the Choice of Weight Matrix

The Laplace-Beltrami operator on differentiable functions on a manifold M is in-
timately related to the heat flow. Let f : M -f IR be the initial heat distri-
bution, u(s, t) be the heat distribution at time t (u(s, O) f(s)). The heat
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equation is the partial differential equation = Lu. The solution is given by
u(x, t) = fM H(x, y)f(y) where H is the heat kernel - the Green's function for
this PDE. Therefore,

Lf(x)=Lu(x,0)= ( IMH

Locally, the heat kernel is approximately equal to the Gaussian, H(x, y)
(4irt) e

IIH
where Ix - y (x and y are in local coordinates) and t are

both sufficiently small and n = dirnM. Notice that as t tends to O, the heat
kernel H(x, y) becomes increasingly localized and tends to Dirac's cs-function, i.e.,
Jç f H(x, y)f(y) = f(x). Therefore, for small t from the definition of the deriva-

tive we have

i
2 e f(y)dyiLf(x) -- [f(x) - (4t)- II_yII2

t IM j

If x1, . . , x are data points on M, the last expression can be approximated by

Lf(x) = _ [f(xi) - (4irty e
jx II2

o<IIxi-xjI<

The coefficient is global and will not affect the eigenvectors of the discrete
Laplacian. Since the inherent dimensionality of M may be unknown, we put
a = -(47rt). Noticing that the Laplacian of the constant function is zero, we

immediately have = e
H

Notice, however, that we do not

have to worry about a, since the graph Laplacian L will choose the correct multi-
plier for us. Finally we see how to choose the edge weights for the adjacency matrix
W:

e
IIx_xII2

if IIx -xiii <E
I O otherwise

3 Examples

Example i - A Toy Vision Example: Consider binary images of vertical and
horizontal bars located at arbitrary points in the 40 x 40 visual field. We choose
1000 images, each containing either a vertical or a horizontal bar (500 containing
vertical bars and 500 horizontal bars) at random. Fig. 1 shows the result of applying
the Laplacian Eigenmaps compared to PCA.

Example 2 - Words in the Brown Corpus: Fig. 2 shows the results of an
experiment conducted with the 300 most frequent words in the Brown corpus - a
collection of texts containing about a million words available in electronic format.
Each word is represented as a vector in a 600 dimensional space using information
about the frequency of its left and right neighbors (computed from the bigram
statistics of the corpus).

Example 3 - Speech: In Fig. 4 we consider the low dimensional representations
arising from applying the Laplacian Eigenmap algorithm to a sentence of speech
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Figure 5: A blowup of the three selected regions in figure 4, from left to right.
Notice the phonetic homogeneity of the chosen regions. Note that points marked
with the same symbol may arise from occurrences of the same phoneme at different
points in the utterance. The symbol "sh" stands for the fricative in the word she;
"aa" ," ao" stand for vowels in the words dark and all respectively; "kcl" ," dcl"," gd"
stand for closures preceding the stop consonants "k" ," d" ," g" respectively. "h#"
stands for silence.

sampled at 1kHz. Short-time Fourier spectra were computed at 5 ms intervals
yielding 685 vectors of 256 Fourier coefficients for every 30 ms chunk of the speech
signal. Each vector is labeled according to the identity of the phonetic segment it
belonged to. Fig. 4 shows the speech data points plotted in the two dimensional
Laplacian representation. The two "spokes" correspond predominantly to fricatives
and closures respectively. The central portion corresponds mostly to periodic sounds
like vowels, nasals, and semivowels. Fig. 5 shows three different regions of the
representation space.
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