
Convergence of diffusions and eigenvalues in
rough domains

Alexander Teplyaev

joint research with

Michael Hinz (Bielefeld), Masha Gordina (UConn), Marco
Carfagnini (UCSD), Anna Rozanova-Pierrat, Gabriel Claret

(Paris-Saclay) et al.

Milan 2024



Abstract:

Dirichlet form analysis gives powerful tools to study diffusions in
non-smooth settings, and Mosco convergence is a standard
approach to study approximations. However, Mosco convergence
may not be sufficient to understand finer properties, such as
convergence of eigenvalues and small deviations of diffusion
processes. The talk will present two recent results that strengthen
Mosco convergence of Dirichlet forms. One result deals with
Euclidean extension domains with irregular, or fractal, boundaries
(joint work with Michael Hinz and Anna Rozanova-Pierrat). The other
result deals with small deviations in sub-Riemannian situations (joint
work with Marco Carfagnini and Masha Gordina).



M. Hinz, A. Teplyaev. Closability, regularity, and
approximation by graphs for separable bilinear forms.

Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
441 (Veroyatnost i Statistika. 22):299-317, 2015. Springer: J. Math.
Sci. (2016) 219 807–820 doi:10.1007/s10958-016-3149-7

We consider a countably generated and uniformly closed algebra of
bounded functions. We assume that there is a lower semicontinuous,
with respect to the supremum norm, quadratic form and that normal
contractions operate in a certain sense. Then we prove that a
subspace of the effective domain of the quadratic form is naturally
isomorphic to a core of a regular Dirichlet form on a locally compact
separable metric space.

We also show that any Dirichlet form on a countably generated
measure space can be approximated by essentially discrete Dirichlet
forms, i.e. energy forms on finite weighted graphs, in the sense of
Mosco convergence, i.e. strong resolvent convergence.
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Continuity Equations on Fractals.
Michael Hinz, Waldemar Schefer (Bielefeld University)

In this talk we study first order differential operators on fractals that
take func- tions into functions. These operators generalize first order
derivatives on p.c.f. fractals introduced by M. Hino as the derivatives
of energy finite functions with respect to a minimal energy-dominant
reference function. Here we may also allow minimal energy-dominant
differential one-forms as reference elements. In general the domains
of such first order differential operators are larger than the domain of
the underlying Dirichlet form. We prove an integration by parts for-
mula and well-posedness results for continuity equations on fractals.
As a key tool we use recent work of W. Arendt, I. Chalendar, R.
Eymard on boundary quadruples.



Derivations and Dirichlet forms on fractals.
M. Ionescu, L. G. Rogers, A. Teplyaev, JFA 2012

We study derivations and Fredholm modules on metric spaces with a
local regular conservative Dirichlet form. In particular, on finitely
ramified fractals, we show that there is a non-trivial Fredholm module
if and only if the fractal is not a tree (i.e. not simply connected). This
result relates Fredholm modules and topology, and refines and
improves known results on p.c.f. fractals. We also discuss weakly
summable Fredholm modules and the Dixmier trace in the cases of
some finitely and infinitely ramified fractals (including non-self-similar
fractals) if the so-called spectral dimension is less than 2. In the
finitely ramified self-similar case we relate the p-summability question
with estimates of the Lyapunov exponents for harmonic functions and
the behavior of the pressure function.



Theorem 5.16 (Non triviality of Fredholm modules for
finitely ramified cell structures)

The Fredholm module (H, F ) is non trivial,
if and only if X is not a tree.

The result stated in [F. Cipriani and J.-L. Sauvageot, 2009] for p.c.f.
fractals omitted the distinction between trees and non-trees; in
particular, [CS, Proposition 4.2] does not hold for the unit interval,
which is a p.c.f. self-similar set, in the sense of Kigami.



Harmonic coordinates on fractals with finitely ramified
cell structure. Teplyaev CJM (2008)

Theorem 3. Suppose that all n-harmonic functions are continuous.
Then E is a local regular Dirichlet form (with respect to any measure
that charges every nonempty open set).

Proof . The regularity of E is proved in [J. Kigami, Harmonic analysis
for resistance forms. J. Functional Analysis 204 (2003), 399–444.] ...

erratum: my theorem proves locality under assumtion that E is
regular, which was investigated by Kigami, Kumagai et al.
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Mosco convergence, strong and norm resolvent convergence
Introduction and motivation, analysis on “fractafolds”∗

Physics motivation
Heat Kernel Estimates and Dirichlet Forms
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Wentzell Boundary conditions
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1. Convergence of eigenvalues in fractal domains
2. Discrete spectrum for Dirichlet forms
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4. Convergence of sub-Riemannian eigenvalues?
6. Convergence of the Dirichlet heat kernels
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New Frontiers: Layer potentials

Riemann-Hilbert and Poincare variational problems
Hilbert transform
Maxwell and other vector equations



Mosco convergence, strong and norm resolvent
convergence

▶ Mosco, Umberto Convergence of convex sets and of solutions of
variational inequalities. Advances in Math. 3 (1969), 510–585.

▶ Mosco, Umberto Composite media and asymptotic Dirichlet
forms. J. Funct. Anal. 123 (1994), no. 2, 368–421.

Kato, Tosio
Perturbation theory for linear operators. Springer-Verlag 1966.

[Reed-Simon 1972]: For non-negative closed quadratic forms,
▶ Mosco convergence is equivalent to the strong resolvent

convergence,
▶ but is weaker than the norm resolvent convergence.



Mosco convergence does not imply convergence of
the spectrum

M-lim
n→∞

En = F or En
M−−−→

n→∞
F .

▶ xn ∈ L2 converging weakly to x ∈ L2,
lim inf
n→∞

En(xn) ≥ F (x);

▶ for each x ∈ L2 there exists an approximating sequence of
elements xn ∈ L2, converging strongly to x , such that
lim sup

n→∞
En(xn) ≤ F (x).

Example:
L2 := ℓ2(Z+)

En((xk )) :=
∑

k⩾n |xk |2
M−−−→

n→∞
E = 0

σ(En) = {0, 1} ̸= {0} = σ(E)



Introduction and motivation, analysis on “fractafolds”∗

▶ *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

▶ A “fractafold” is to a fractal what
a manifold is to a Euclidean half-space.

This is a part of the broader program to develop probabilistic, spectral
and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



What is the first appearance of fractals is science?

In a sense, the simplest possible fractal appears in the famous Zeno’s
paradoxes: Zeno of Elea (c. 495 – c. 430 BC) "Achilles and the
Tortoise"

1. Achilles runs to the tortoise’s starting point while the tortoise
walks forward.

2. Achilles advances to where the tortoise was at the end of Step 1
while the tortoise goes yet further.

3. Achilles advances to where the tortoise was at the end of Step 2
while the tortoise goes yet further.
Etc.

Apparently, Achilles never overtakes the tortoise, since however
many steps he completes, the tortoise remains ahead of him.



Dichotomy paradox: that which is in locomotion must arrive at the
half-way stage before it arrives at the goal. In a race, the quickest
runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must
always hold a lead. [Aristotle, Physics VI:9, 239b10, 239b15]

***

In 1821, Augustin-Louis Cauchy proved that, for −1 < x < 1,

a + ax + ax2 + ax3 + ... =
a

1 − x
:= S(a, x)

This is a weakly-self-similar sum satisfying a re-normalization
“fixed-point” functional equation

S(a, x) = a + x · S(a, x)









Cantor, Sierpinski, Julia, Mandelbrot
▶ How Long Is the Coast of Britain? Statistical Self-Similarity and

Fractional Dimension (Mandelbrot 1967).
The coastline paradox: the measured length of a stretch of coastline
depends on the scale of measurement.

Fractal titanium oxide under inverse 10-ns laser deposition in air and
water. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, Z. Zhai
Applied Physics A volume 123, Article number: 253 (2017)
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As first pointed out by Bardeen and Ginzburg in the early sixties1,2,
the amount of magnetic flux carried by vortices in super-
conducting materials depends on their distance from the sample
edge, and can be smaller than one flux quantum, f0 = h/2e (where
h is Planck’s constant and e is the electronic charge). In bulk
superconductors, this reduction of flux becomes negligible at sub-
micrometre distances from the edge, but in thin films the effect
may survive much farther into the material3,4. But the effect has
not been observed experimentally, and it is often assumed that
magnetic field enters type II superconductors in units of f0. Here
we measure the amount of flux introduced by individual vortices
in a superconducting film, finding that the flux always differs
substantially from f0. We have observed vortices that carry as
little as 0.001f0, as well as ‘negative vortices’, whose penetration
leads to the expulsion of magnetic field. We distinguish two
phenomena responsible for non-quantized flux penetration: the
finite-size effect1–4 and a nonlinear screening of the magnetic field
due to the presence of a surface barrier. The latter effect has not
been considered previously, but is likely to cause non-quantized
penetration in most cases.

The magnetic properties of a superconductor, including its
current-carrying capacity, are determined by the motion of flux
through that superconductor as a whole; this motion involves
propagation of flux not only through the bulk but also through
the superconductor’s edge. Because of the inevitable pinning in real
superconductors, vortices can initially penetrate only at a finite
(usually, mesoscopic) distance from the edge. This effectively creates
an edge layer that serves as a reservoir of vortices that are subse-
quently injected further into the bulk, and there is growing evidence
that such a layer significantly influences global superconducting
properties5,6. On the other hand, near-edge vortices are not exactly
the same as vortices in the bulk because the distribution of electric
currents around a vortex (that is, the vortex’s structure) has to
change owing to the presence of the edge1–4.

One of the most directly observable consequences of the influence
of an edge on a vortex is that its flux is no longer quantized and
becomes smaller than f0 (refs 1–4). This effect is particularly
important in the case of thin films, where the screening is strongly
suppressed and non-exponential3,4. Although this flux reduction
has been known theoretically for several decades, such vortices
(carrying a fraction of f0) have never been observed or inferred in
an experiment. This provided the original motivation for our work,
as we found a way to address the issue by making use of ballistic Hall
magnetometry7,8. This technique allows accurate magnetization
measurements on micrometre-sized superconductors, where the
edge effects can be dominant.

Figure 1 shows typical behaviour that we observed for the initial
stages of field penetration in relatively large (15-mm), thin-film
superconductors. Curve a shows magnetic flux penetrating inside a
sample in a sequence of steps, such that each step corresponds to a

vortex or a number of vortices jumping inside; such behaviour is in
agreement with general expectations. However, a more careful look
reveals that the step height is not quantized, and that some jumps
are smaller than f0. We postpone a discussion of this observation
and now refer to another (nominally similar) sample in Fig. 1.
Curve b (for this sample) reveals a completely different picture,
which we have observed for many other samples. Here, after the
initial region of the full Meissner effect, the flux enters the film
relatively smoothly and, only after several flux jumps, the behaviour
becomes qualitatively similar to the one shown in curve a. On the
smooth part of curve b, the flux jumps correspond to a minor
fraction of f0. Moreover, the first two jumps are negative, indicating
that the superconductor expels magnetic field when a vortex jumps
inside. The influence of the edge1–4 discussed above can decrease the
amplitude of flux jumps and is partly (see below) responsible for
non-quantized steps. However, the existence of negative flux jumps
is unexpected and seemingly makes no sense.

To understand the origin of the negative jumps as well as the
reason why similar samples exhibit such different behaviour, we
performed a number of experiments using various sample geo-
metries. The results are summarized in Fig. 2, where we try to
simplify the situation as much as possible by using relatively small
disks and by examining only the penetration of the first vortex. The
advantage of using such small samples is that bulk pinning becomes
negligible compared to interaction of vortices with the edge and, as a
result, the first vortex comes right to the disk’s centre8,9. Therefore,
we can study the penetration of an individual vortex at the same,
well defined, distance (R = D/2) from the edge. As seen from Fig. 2,
the amount of flux carried by vortices entering the disk depends on
the roughness of the edge of the disk. The disk shown in Fig. 2a, with
a smooth edge, exhibits a negative flux jump when the first vortex
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Figure 1 Penetration of perpendicular magnetic field in a thin superconducting film. The
curves show the amount of flux Φ, as a function of increasing field H, inside two
aluminium disks of diameter D < 15 mm and thickness h < 0.1 mm at T < 0.5 K. Due to
bulk pinning, which is rather weak8 but still present, entering vortices jump no farther
than a few micrometres from the edge (we observe hysteresis due to bulk pinning if
D . 4 mm). This makes measurements for the larger disks essentially equivalent to a
study of flux penetration in a pD-long strip of an identical macroscopic film. Initially, the
samples were cooled in zero field. Special care was taken to avoid ‘freezing-in’ any
vortices; the absence of such vortices was verified by observing a symmetric response for
the opposite field direction. The measurements were performed using ballistic Hall
magnetometry (Fig. 2). For convenience, we define Φ so that it has zero slope in the low-
field limit where M ~ H (such a notation ignores the amount of flux in the … 2 8 % l-layer for the
ideal Meissner state; taking the latter flux into account would only lead to an additional,
constant slope for Φ–H curves). The absolute scale along the Φ axis is determined with
an experimental accuracy of about 10%. Curve a is shifted for clarity. Inset, magnified
view of part of curve b, exhibiting negative flux jumps.
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Superconducting disk with magnetic coating: Re-entrant Meissner
phase, novel critical and vortex phenomena
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PACS 74.78.Na – Mesoscopic and nanoscale systems
PACS 74.25.Op – Mixed state, critical fields, and surface sheaths

Abstract – Within the Ginzburg-Landau formalism, we study the mixed state of a superconduct-
ing disk surrounded by a magnetic ring. The stray field of the magnet, concentrated at the rim of
the superconducting disk, favors ring-like arrangement of induced vortices, to the point that even
a single vortex state exhibits asymmetry. A novel route for the destruction of superconductivity
with increasing magnetization of the magnetic coating is found: first all vortices leave the sample,
and are replaced by a re-entered Meissner phase with a full depression of the order-parameter
at the sample edge; subsequently, superconductivity is then gradually suppressed from the edge
inwards, contrary to the well-known surface superconductivity. When exposed to an additional
homogeneous magnetic field, we find a field-polarity–dependent vortex structure in our sample
—for all vorticities, only giant- or multi-vortex states are found for given polarity of the
external field. In large samples, the number of vortex shells and number of flux quanta in each of
them can be controlled by the parameters of the magnetic coating.

Copyright c© EPLA, 2007

Introduction. – Over last decade, vortex matter in
mesoscopic superconductors has drawn the attention of a
wide scientific community. Non-trivial effects of quantum
confinement and novel phase transitions were found, e.g.,
in submicron superconducting (SC) disks. Both type
and order of the transitions between different SC states
and between the superconducting and the normal state
depended crucially on the disk radius and its thickness
[1–3]. Early measurements [1,4] confirmed the existence
of vortices in the mixed state of thin samples even for
type-I materials, and vortex entry and exit were described
theoretically in ref. [5]. However, it is the exact vortex
configuration that rose most questions, due to the strong
interplay of the inter-vortex interactions and the imposed
topological confinement. One can conclude by analogy
with classical particles confined by an external poten-
tial [6], that the structure of a finite number of vortices
should differ from a simple triangular arrangement
(i.e. Abrikosov lattice) and exhibit different metastable
states. Schweigert et al. [3] first addressed this issue,
and predicted the multi-vortex state (the collection of
single-quanta vortices on a ring) and the giant-vortex

(a)Also at: Department of Physics, University of Bath - Claverton
Down, Bath BA2 7AY, UK.
(b)E-mail: francois.peeters@ua.ac.be

state (where vortices coalesce into a single multiquanta
vortex) in SC disks. Very recently, experimental distinc-
tion between the latter two allotropic states for given
vorticity was made by Kanda et al. [7].
Besides by the sample shape, the vortex configurations

can also be influenced by inhomogeneous magnetic fields.
In this respect, mesoscopic superconductors with an out-
of-plane magnetized ferromagnet on top were studied
[8,9]. Significant enhancement of critical field was also
found, for applied field opposite to the polarity of the
magnet. The optimal enhancement of both critical field
and critical current was actually realized for in-plane
magnet on top of the SC sample [10,11], for out-of-
plane magnetic strip placed aside the superconductor [12],
as well as for SC wires covered by a soft magnetic
material [13]. The versatility of such studies was further
proven by using a superconducting ring with a magnet
inside as a phase-shifter for a qubit [14], or as a linear
magnetic flux amplifier [15].
Motivated by the above studies, we investigate here

another superconductor-ferromagnet hybrid structure —a
superconducting disk with a magnetic ring around. Such
a structure has not been considered before, and is actually
in many ways different from previous studies. For example,
magnetic field emerging from the magnetic ring will affect

27005-p1
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Novel vortex phenomena in a superconducting disk with magnetic coating

Fig. 2: The free energy of the states with different vorticity L as a function of the magnetization of the magnetic coating. Insets
show the Cooper-pair density contourplots of the corresponding states. (a-c) Superconducting phase and (d-f) |ψ|2-density
plots, illustrate simultaneous vortex exit and suppression of superconductivity at the rim of the superconducting disk for high
magnetization.

thickness d= 1.0ξ, laterally coated by a thin oxide layer
(l= 0.1ξ) and a magnetic ring of width Rout−Rin = 2.0ξ
(see fig. 1(a) for notation). The energy landscape is
obtained as a function of the magnetization of the ring,
i.e. the amplitude of the stray field illustrated in fig. 1(b).
Similar to the case of a superconducting disk in a homo-

geneous magnetic field [3], each curve in fig. 2 corre-
sponds to a separate vortex state, denoted by vorticity
L. However, detailed features appear to be very different
from the latter case.

Re-entrant Meissner state. The first fact to note is the
pronounced stability of the Meissner state compared to
the vortex states. Namely, since most of the stray field
of the magnet is actually concentrated at the rim of
the superconducting disk, it can relatively easily be
expelled from the sample. However, due to the penetrat-
ing magnetic field into the interior of the disk, vortices
eventually nucleate there. Insets in fig. 2 show the
contourplots of the Cooper-pair density for states with
vorticity L= 1–3. At a first sight, the found multi-vortex
states seem similar to the ones found in ref. [3], except
that vortices are untypically located closer to the edges
of the disk due to the higher magnetic field there.
The latter feature becomes even more obvious for

the L= 4 state, shown in figs. 2(a,d) for magnetization
M = 8.7Hc2. Interestingly enough, for further increased
magnetization of the coating, we did not find new vortex
states appearing; instead, superconductivity ceases to
exist at M = 17.2Hc2. Actually, it happens not only that
no new vortices enter the sample, but quite opposite —
they collectively leave the superconducting disk. As shown

in figs. 2(a-f), in a second-order transition, all four vortices
gradually exit, and are replaced by a complete ring-like
suppression of superconductivity. Strictly speaking, for
M > 10.4Hc2 there are no vortices left in the sample,
and we have the re-entrance of the L= 0 state in the
ground state. Its manifestation is different though, as no
order parameter survives at the edge of the disk, neither
do screening currents flow there. We are left with an
effectively smaller superconducting disk (Reff ≈ 2.2ξ) and
with Dirichlet boundary condition (ψ= 0). With further
increase of the magnetic field, superconductivity is gradu-
ally destroyed over the whole sample, with no new vortices
appearing. Similar absence of surface superconductivity
in cylindrical superconductors in homogeneous magnetic
field with modified boundary condition was discussed
earlier in ref. [17].

Asymmetric single-vortex state. Obviously, all above
novel phenomena are directly related to the specific
inhomogeneous profile of the magnetic field emerging from
the magnetic ring. To enhance this effect, in what follows
we enlarge the superconducting disk (R= 8.0ξ), and make
the magnetic coating thinner (width 1.0ξ). In such a
scenario, stray magnetic field of the magnet becomes even
more pronounced at the edge of the superconductor, and
sharply drops to zero towards the interior of the disk.
The results are shown in fig. 3. As a consequence of

a larger superconducting sample, more different vortex
states are stabilized compared to fig. 2; more vortices
may enter the sample, and critical magnetization for the
superconducting/normal transition is increased to a higher
value of Mc = 122.7Hc2 (for clarity, figure shows only the
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M. V. Milošević et al.

Fig. 1: (a) The superconducting disk with magnetic coating, in external magnetic field (parameters indicated, shown directions
for �M and �H will be referred to as positive throughout the article). (b) The magnetic field profile inside a magnetic ring with
Rin = 400 nm, Rout = 600 nm and d= 100 nm.

most the outer regions of the superconducting disk (this
is the reversed case from, e.g., refs. [8,9,14,15]), and
thus strongly influence surface superconductivity and
Bean-Livingston barrier.

Theoretical formalism. – In this work, we analyze
the interplay of the magnetic fields in a thin super-
conducting disk inside a magnetic ring with perpendi-
cular magnetization (see fig. 1), exposed to a background
homogeneous field. The stray field inside a thin magnetic
ring (its z-component) can be calculated analytically as

h/M =

∞∑
n=0

P2n(0)P2n+1(ζ)
(
r2n+1out − r2n+1in

)
, (1)

in polar (ρ, θ, z) coordinates, where ζ = d
/√

d2+4ρ2,

rin,out =
√
d2/4+ ρ2

/
Rin,out, and Pi(x) are the Legendre

polynomials (see fig. 1 for notation of parameters and
ref. [16] for the general expression). In our sample,
magnetic ring and superconductor are electronically
decoupled by a thin oxide layer. We first investigate the
influence of the stray field of the magnet on the super-
conducting state of the disk; later, critical parameters
and vortex matter are discussed in the presence of the
applied field.
In our theoretical treatment of this system, we use the

non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V , we minimize, with
respect to the order parameter ψ, the GL free energy

F =
∫
dv

V

(
|(−i�∇− �AH − �Am)ψ|2− |ψ|2+ 1

2
|ψ|4
)
,

(2)

expressed in units of the critical field energy density,
F0 =H2c /4π. Note that in eq. (2) all distances are scaled

to ξ, the order parameter to ψ0 =
√−α/β (α, β being

the GL coefficients), and the magnetic vector potential
�A is given in units of A0 =Φ0

/
2πξ ( �A= �AH + �Am, i.e. it

sums the vector potential of the homogeneous field and
the magnetic ring, respectively). Note that eq. (2) assumes
the contribution of the screening currents to the magnetic
field to be negligible. In other words, we consider a type-II
superconductor of finite size, such that the London pene-
tration length is much larger than the sample. This is
justified for thin mesoscopic samples, which mostly exhibit
effective strong type-II behavior, and for extreme type-II
materials such as NbSe2 and NbSe3 (under pressure).
Minimization of eq. (2) leads to equations for the order

parameter and superconducting current

(−i�∇− �A)2ψ= (1− |ψ|2)ψ, (3)

�j =�(ψ∗�∇ψ)− |ψ|2 �A, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/ξ in each direction. We then
start from randomly generated initial distribution of ψ,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state1(ψ= 1) or the normal state (ψ≈ 0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.

Superconducting disk in the stray field of
the coating. – Figure 2 shows the free energy of the
superconducting state for a disk of radius R= 4.0ξ and

1Note that, strictly speaking, Meissner screening of the applied
magnetic field is not included in the present theoretical approach.
Nevertheless, we refer to the analogous vortex-free superconducting
state as a Meissner phase in the rest of the article.
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M. V. Milošević et al.

Fig. 1: (a) The superconducting disk with magnetic coating, in external magnetic field (parameters indicated, shown directions
for �M and �H will be referred to as positive throughout the article). (b) The magnetic field profile inside a magnetic ring with
Rin = 400 nm, Rout = 600 nm and d= 100 nm.

most the outer regions of the superconducting disk (this
is the reversed case from, e.g., refs. [8,9,14,15]), and
thus strongly influence surface superconductivity and
Bean-Livingston barrier.

Theoretical formalism. – In this work, we analyze
the interplay of the magnetic fields in a thin super-
conducting disk inside a magnetic ring with perpendi-
cular magnetization (see fig. 1), exposed to a background
homogeneous field. The stray field inside a thin magnetic
ring (its z-component) can be calculated analytically as

h/M =

∞∑
n=0

P2n(0)P2n+1(ζ)
(
r2n+1out − r2n+1in

)
, (1)

in polar (ρ, θ, z) coordinates, where ζ = d
/√

d2+4ρ2,

rin,out =
√
d2/4+ ρ2

/
Rin,out, and Pi(x) are the Legendre

polynomials (see fig. 1 for notation of parameters and
ref. [16] for the general expression). In our sample,
magnetic ring and superconductor are electronically
decoupled by a thin oxide layer. We first investigate the
influence of the stray field of the magnet on the super-
conducting state of the disk; later, critical parameters
and vortex matter are discussed in the presence of the
applied field.
In our theoretical treatment of this system, we use the

non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V , we minimize, with
respect to the order parameter ψ, the GL free energy

F =
∫
dv

V

(
|(−i�∇− �AH − �Am)ψ|2− |ψ|2+ 1

2
|ψ|4
)
,

(2)

expressed in units of the critical field energy density,
F0 =H2c /4π. Note that in eq. (2) all distances are scaled

to ξ, the order parameter to ψ0 =
√−α/β (α, β being

the GL coefficients), and the magnetic vector potential
�A is given in units of A0 =Φ0

/
2πξ ( �A= �AH + �Am, i.e. it

sums the vector potential of the homogeneous field and
the magnetic ring, respectively). Note that eq. (2) assumes
the contribution of the screening currents to the magnetic
field to be negligible. In other words, we consider a type-II
superconductor of finite size, such that the London pene-
tration length is much larger than the sample. This is
justified for thin mesoscopic samples, which mostly exhibit
effective strong type-II behavior, and for extreme type-II
materials such as NbSe2 and NbSe3 (under pressure).
Minimization of eq. (2) leads to equations for the order

parameter and superconducting current

(−i�∇− �A)2ψ= (1− |ψ|2)ψ, (3)

�j =�(ψ∗�∇ψ)− |ψ|2 �A, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/ξ in each direction. We then
start from randomly generated initial distribution of ψ,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state1(ψ= 1) or the normal state (ψ≈ 0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.

Superconducting disk in the stray field of
the coating. – Figure 2 shows the free energy of the
superconducting state for a disk of radius R= 4.0ξ and

1Note that, strictly speaking, Meissner screening of the applied
magnetic field is not included in the present theoretical approach.
Nevertheless, we refer to the analogous vortex-free superconducting
state as a Meissner phase in the rest of the article.
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Fig. 3: Free energy diagram for a large superconducting disk with thin magnetic coating. Insets show the |ψ|2-density plots of
distinct vortex states.

range below M = 65Hc2). The first essential difference
compared to the case of a smaller sample is the single-
vortex (L= 1) state. The Cooper-pair density of this state
is shown as inset (a) of fig. 3, which clearly illustrates
the asymmetric placement of the vortex with respect
to the sample edge. The origin of this asymmetry is
simply the energy minimization, following the competition
between the cylindrical confinement and the magnetic
field localized away from the center of the disk. Note
that such an asymmetric solution to the Ginzburg-Landau
equations is enabled by the non-linear term in eq. (3),
and is crucially different from the linear case which also
relates to semiconductor quantum nanostructures [18].
Therefore, this makes the broken-symmetry state likely
unique.
The remaining insets in fig. 3 depict two more distinct

vortex states found in the larger sample. Namely, with
increasing magnetization of the coating, new vortices
are added to the multi-vortex shell close to the disk edge
—up to L= 12, when one vortex enters the central part
of the disk (as shown in inset (b)). However, this tendency
does not continue for higher magnetization, as additional
vortices are placed at the outer shell up to L= 14. For
M > 70.2Hc2, the vortex shell starts to leave the disk in
the same fashion as in figs. 2(a-f), but with one difference
—the central vortex remains in the sample (see inset(c)),
until the very transition to the normal state.

Field-polarity-dependent vortex structure. – In
the remainder of the article, we will consider the influence
of the magnetic coating on the properties of the sample
in an applied homogeneous magnetic field. We fix the
magnetization of the coating toM = 4.0Hc2 (not sufficient
for vortex nucleation), and sweep up/down the applied
field H. The outcome is shown in fig. 4(a), for the same
parameters of the sample as in fig. 2. Figure 4(b) shows the
same diagram but for demagnetized coating, i.e. M = 0,
for comparison.
The first striking effect of the coating is the very

pronounced asymmetry of fig. 4(a) with respect to the
polarity of the applied field. For �H ‖ − �M the upper
critical field is ∼ 60% lower than in the case of M = 0,
and maximal vorticity is Lmax = 5 (in (b), Lmax = 8).
On the other hand, for �H ‖ �M the critical field becomes
∼ 70% higher than in the case of M = 0, with Lmax =
13. Similar enhancement of the critical field due to the
compensation of the applied and the magnet’s stray field
has been found experimentally in ref. [9]. Note that there
the magnetic dot was placed on top and approximately in
the center of the superconducting disk, so that the stray
field had the opposite polarity to the one in our case, and
was maximal in the central part of the sample (i.e. under
the dot). Consequently, they observed enhancement of the
critical field for �H ‖ − �M , and vortex matter in the sample
showed different behavior. As we mentioned earlier, vortex
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Novel vortex phenomena in a superconducting disk with magnetic coating

Fig. 4: (a) Free energy of a superconducting disk with magnetic coating as a function of applied homogeneous magnetic field.
Insets show the Cooper-pair density plots for indicated states. (b) Same as (a), but for demagnetized coating. In (b), dashed
lines denote multi-vortex and solid lines giant-vortex configurations.

Fig. 5: The |ψ|2-density plots illustrating the arrangement of vortex shells in a large superconducting disk for L= 53 and
L= 60, with magnetic coating with (a,c) negative (M =−8Hc2), or (b,d) positive (M = 8Hc2) magnetization.

states in SC disks have two possible manifestations —a
giant- and a multi-vortex. Figure 4(b) shows the stability
of each of them for different vorticities (giant-/multi-
vortex, solid/dashed line). In the case of magnetic dot

on top, and �H ‖ �M , vortices are attracted by the magnet
and compressed under the dot, which favors giant-vortex
state, but does not necessarily impose it. However, in
our sample, in the corresponding case (now �H ‖ − �M),
favorable position of vortices is at the rim of the disk,
where total magnetic field is maximal. As a consequence,
we find only multi-vortex states on the right side of the
diagram in fig. 4(a). The negative applied field is however
compensated by the stray field; total field is maximal in
the center of the disk, and changes sign towards the disk
edge. This strongly enforces the confinement, leading to
giant-vortex formation for all vorticities. Note that due
to the total magnetic field which changes its polarity
across the sample, one may expect the appearance of the

vortex-antivortex configurations [8]. However, we did not
observe such states in the considered range of parameters,
mainly due to the thin magnetic coating. This causes a
very pronounced stray magnetic field over a very narrow
area close to the edge of the superconductor, insufficiently
wide for the stabilization of antivortices. Additionally, the
finite value of the stray magnetic field at the edge of the
sample induces significant local supercurrents, which lower
the Bean-Livingston barrier for expulsion of antivortices.

Manipulation of vortex shells and magic
numbers. – The competition between the Abrikosov
lattice and the imposed symmetry of the confinement
in large superconducting disks with many captured
vortices [19,20] has been of general interest in the last
decade. Namely, similar phenomena can also be found in
confined clusters of classical particles, such as electrons
on liquid He, artificial atoms, dust particles in plasmas,
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We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃
n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by
R(x, y) =

(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.
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Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the
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�2
d logP���
d log�

� a�
b

�� c
(10)

agrees best with the data. In Fig. 1, the curve

DS��� � 4:02�
119

54� �
(11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range � 2
�40; 400�. Although both b and c individually are slightly
altered when one varies the range of �, their ratio b=c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

P��� �
1

�a=2�1� c=��b=2c
; (12)

implying a behavior

P��� �
�
��a=2 for large �;
���a�b=c�=2 for small �:

(13)

Our interpretation of Eqs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a�
b=c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts ��min; �max� for the range of �, as well
as different weightings of the errors, we obtain the asymp-
totic value

DS�� � 1� � 4:02
 0:1; (14)

which means that the spectral dimension extracted from
the large-� behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the ‘‘short-distance spectral dimension,’’ ob-
tained by extrapolating Eq. (12) to �! 0 is given by

DS�� � 0� � 1:80
 0:25; (15)

and thus is compatible with the integer value two.
Discussion.—The continuous change of spectral dimen-

sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘‘dimensional transmutation’’ to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since � from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling GN , it
is tempting to write the continuum version of (10) as

PV��� �
1

�2

1

1� const:�GN=�
; (16)

where const. is a constant of order one. Using the same
naı̈ve dimensional transmutation, one finds that our ‘‘uni-
verse’’ of 181.000 discrete building blocks has a spacetime
volume of the order of �20lPl�

4 in terms of the Planck
length lPl, and that the diffusion with � � 400 steps cor-
responds to a linear diffusion depth of 20lPl, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.
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Abstract: The emergence of fractal features in the microscopic structure of space-time

is a common theme in many approaches to quantum gravity. In this work we carry out a

detailed renormalization group study of the spectral dimension ds and walk dimension dw

associated with the effective space-times of asymptotically safe Quantum Einstein Grav-

ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-

proximately constant for an extended range of length scales: a classical regime where

ds = d, dw = 2, a semi-classical regime where ds = 2d/(2+d), dw = 2+d, and the UV-fixed

point regime where ds = d/2, dw = 4. On the length scales covered by three-dimensional

Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-

parent puzzle between the short distance behavior of the spectral dimension reported from

Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and

Asymptotic Safety.
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Fractal space-times under the microscope: A
Renormalization Group view on Monte Carlo data
(Martin Reuter, Frank Saueressig):

Three scaling regimes of the effective space-times of asymptotically
safe Quantum Einstein Gravity (QEG):

1. a classical regime ds = d, dw = 2,
2. a semi-classical regime ds = 2d/(2 + d), dw = 2 + d ,
3. the UV-fixed point regime ds = d/2, dw = 4.

On the length scales covered by three-dimensional Monte Carlo
simulations, the resulting spectral dimension is in very good
agreement with the data and provides a natural explanation for the
apparent puzzle between the short distance behavior of the spectral
dimension reported from Causal Dynamical Triangulations (CDT),
Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.
▶ Mathav Murugan: dw = df consistent with ds = 2df/dw = 2
▶ Growth and percolation on the uniform infinite planar

triangulation by Omer Angel (GAFA 2003)
▶ Anomalous diffusion of random walk on random planar maps by

Ewain Gwynne and Tom Hutchcroft (PTRF 2020)



Heat Kernel Estimates and Dirichlet Forms

pt(x, y) ∼
1

tdf/dw
exp

(
−c

d(x, y)
dw

dw −1

t
1

dw −1

)

distance ∼ (time)
1

dw

df = Hausdorff dimension
1
γ
= dw = “walk dimension” (γ=diffusion index)

2df
dw

= ds = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980’—)



Stability Theorem (Barlow, Bass, Kumagai (2006))

Under natural assumptions on the MMD (geodesic Metric Measure
space with a regular symmetric conservative Dirichlet form), the
sub-Gaussian heat kernel estimates are stable under rough
isometries, i.e. under maps that preserve distance and energy up to
scalar factors.

Gromov -Hausdorff + energy



Theorem. (Barlow, Bass, Kumagai, T. (1989–2010).) On any
generalized Sierpiński carpet there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries.

Therefore there is a unique symmetric Markov process and
a unique Laplacian.

Moreover, the Markov process is strong Feller and its transition
density satisfies sub-Gaussian heat kernel estimates.

Main difficulties:If it is not a cube in Rn, then
▶ dS < df , dw > 2
▶ the energy measure and the Hausdorff measure are mutually

singular;
▶ the domain of the Laplacian is not an algebra;
▶ if d(x, y) is the shortest path metric, then d(x, ·) is not in the

domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

▶ Lipschitz functions are not of finite energy;
▶ in fact, we can not compute any functions of finite energy;
▶ Fourier and complex analysis methods seem to be not

applicable.



Wave absorption: numerical shape optimization

▶ F. Magoulès, T.P. Kieu Nguyen, P. Omnes, A. Rozanova-Pierrat,
Optimal absorption of acoustic waves by a boundary.
SIAM J. Control Optimization 59 (2021)
+ more numerical results

▶ C. Bardos, D. Grebenkov, A. Rozanova-Pierrat,
Short-time heat diffusion in compact domains with discontinuous
transmission boundary conditions.
Math. Mod. Meth. Appl. Sci. 26 (2016)

▶ A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval,
Faster diffusion across an irregular boundary.
Phys. Rev. Lett. 108 (2012)
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Fig. 1. An illustration for the Open Set Condition in the case of the square Koch curve, also called

the Minkowski fractal. The thick dotted line outlines the set O, which is called the 0-cell. The thin

dotted lines outlines the open sets in Φ1(O), which are called 1-cells. The bottom picture illustrats
the stronger form of the Open Set Condition used in Theorem 5.1: the thin solid lines outline the

open sets O′ and Φ1(O′).

Note that, by the standard decompositions into different scales, it is essentially

enough to consider the case when all contraction factors di,m are equal, that is

di,m = d for all i and m. To verify the Harnack chain condition, assume that

x, y ∈ Ωm such that distance to the boundary of each x and y is comparable to

δ1 ∼ dm1 and |x− y| = δ2 ∼ dm2 , where m ≥ m1 ≥ m2.

We proceed by considering different cases.

To begin with, assume that y is in a 0-cell but not in any 1-cell. In this case

we can apply the following strategy: connect x to the outer boundary of its 1-cell

by the Harnack chains of balls lying in this 1-cell, and connect this Harnack chain



Wave absorption: theoretical shape optimization

▶ M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Non-Lipschitz uniform
domain shape optimization in linear acoustics.
SIAM J. Control Optim. 59 (2021)

▶ M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Boundary value
problems on non-Lipschitz uniform domains: Stability,
compactness and the existence of optimal shapes.
Asymptotic Analysis (2023)



Equations used in architecture

▶ M. Hinz, F. Magoulès, A. Rozanova-Pierrat, M. Rynkovskaya, A.
Teplyaev, On the existence of optimal shapes in architecture.
Applied Mathematical Modelling 94 (2021)

Given a domain Ω ⊂ RN and a vector field v ∈ W 1,2(Ω)N we denote
the symmetric part of its gradient by

e(v) =
1
2
(
∇v + (∇v)t) .

Let A ∈ L∞(Ω,Ms
N(α, β)) and write σ(v) = Ae(v), v ∈ W 1,2(Ω)N .

We are interested in solutions u ∈ W 1,2(Ω)N of BVP:




−div σ(u) = f in Ω,

u = 0 on ΓDir,

σ(u) · n = g on ΓNeu.

(1)



Wentzell Boundary conditions

▶ A. Wentzell. On boundary conditions for multi-dimensional
diffusion processes. Theor. Probability Appl. (1959)

E(u) =
∫

Ω

∥∇u∥2dx + E∂Ω(u)



Theoretical study

▶ M. R. Lancia, P. Vernole,
Venttsel’ problems in fractal domains
J. Evol. Equ. 14 (2014), no. 3, 681–712.

...

▶ M. Hinz, M. R. Lancia, A. Teplyaev, P. Vernole, Fractal snowflake
domain diffusion with boundary and interior drifts, J. Math. Anal.
Appl. 457 (2018)

E(u) =
∫

Ω

∥∇u∥2dx + E∂Ω(u)



Discrete approximations

▶ M. Gabbard, C. Lima, G. Mograby, L. G. Rogers, A. Teplyaev,
Discretization of the Koch Snowflake Domain with Boundary
and Interior Energies, SEMA SIMAI Springer Series ICIAM2019
Fractals in engineering: Theoretical aspects and Numerical
approximations (2021)

E(u) =
∫

Ω

∥∇u∥2dx + E∂Ω(u)
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Figure 1. Mesh construction through scaled equilateral triangles.

where cn(p1, p2) is the conductance between points p1, p2. Unless stated otherwise we take

(3.2) cn(p1, p2) =





1 if p1 and p2 are connected by an interior edge

4n if p1 and p2 are connected by an outer boundary edge

0 if p1 and p2 are not connected by an edge.

We introduce a measure on the vertices Vn:

mn(p) =

{
1

9n
if p is an interior vertex

1
4n

if p is an outer boundary vertex.
(3.3)

The sequence of graph energies {E n(u)}n≥1 serves as an approximation of E (u) as justified in the following
proposition.

Theorem 3.1. Let u be a core function as described in Corollary 2.4. Then E (u) = limn→∞ E n(u).

Remark 3.2. E n(u) is understood as the graph energy of the restriction of u on Vn.
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Figure 2. Algorithm to generate the vertices of the graph Γn

After the construction of Γn we generate the corrsponding discrete Laplacian Ln as well as the Dirichlet
Laplacian. To generate the discrete Laplacian Ln we use KD Trees to determine efficiently which vertices’s are
boundary points and which are interior. We then create a weighted adjacency matrix with this information
where the weights are defined as in (3.2). From the constructed discrete Laplacian Ln we are able to generate
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Figure 3. Eigenvectors of Ln (left) compared with Dirichlet eigenvectors (right). (a) 1st eigen-
vector of Ln, eigenvalue 0. (b) 1st Dirichlet eigenvector, eigenvalue 118.8. (c) 2nd eigenvector
of Ln, eigenvalue 15.1. (d) 2nd Dirichlet eigenvector, eigenvalue 294.5. (e) 4th eigenvector of
Ln, eigenvalue 48.1. (f) 4th Dirichlet eigenvector, eigenvalue 499.8.
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Figure 4. Eigenvector of Ln (left) compared with Dirichlet eigenvectors (right). (a) 34th
eigenvector of Ln, eigenvalue 1098.6. (b) 13th Dirichlet eigenvector, eigenvalue 1084.6. (Level
4 graph approximation)

to the 13th Dirichlet eigenvector but also correspond to the eigenvalue 1098.6, which is very close to the 13th
Dirichlet eigenvalue (1084.6).

In general we observe that the Dirichlet eigenvectors exhibit more complex pattern than the their cor-
responding eigenvectors of Ln. Note that from a physics point of view, this is expected as the Dirichlet
eigenvectors correspond in our computations to a higher eigenvalues (energy) than their corresponding eigen-
vectors of Ln. Moreover, eigenvectors correspond to higher eigenvalues show increasing oscillatory behavior
which limits the graphical representation. For a better view of such eigenvectors, in particular regarding
their symmetries, we display in Figure 5 contour plots for a selection of eigenvectors of Ln. The blue regions
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Figure 5. Contour Plots of the Eigenvectors of Ln corresponding to eigenvalues λ: (a) 4th
eigenvector, λ = 48.1. (b) 5th eigenvector, λ = 48.1. (c) 6th eigenvector, λ = 85.1. (d) 8th
eigenvector λ = 125.4. (e) 1153rd eigenvector λ = 49965.7. (f) 1157th eigenvector λ = 50156.6.
(g) 1161st eigenvector, λ = 50188.8 and (h) 1162nd eigenvector, λ = 50188.83. Blue regions
indicate the values of an eigenvector in (−ε, ε), red regions in (ε,∞) and green regions in
(−∞,−ε), where ε = 0.01. (Level 4 graph approximation)
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Figure 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and Ln
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and Ln (blue) (Level 4 graph approximation).
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Figure 7. (a) The 5, 028th eigenvector of Ln, λ = 118038.02. (b) The last Dirichlet eigenvec-
tor, λ = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors

bouncing ball modes and the existence of such modes is known mostly for a class of convex domains. For
details see [NG13] where also an example is provided, for which the high-frequency localized modes exist in
a non-convex domain (an elliptical annulus).

Our numerical observations show that taking the boundary energy into account while defining the discrete
Laplacian Ln induces eigenvectors corresponding to eigenvalues in the higher part of the spectrum that
demonstrate features of whispering gallery type modes. The geometrical information of the boundary is
encoded in Ln via the edge weights (conductance) and the vertices measure. Hence we are confronted with
the question whether it is possible to predict such modes by directly studying the Laplacian Ln. We will give
a partial answer in the next section by using ideas of Filoche and Mayboroda introduced in [FM].



SNOWFLAKE DOMAIN WITH BOUNDARY AND INTERIOR ENERGIES 21

Figure 8. The last Ln eigenvector, λ = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).

5. Landscape Mapping: A Filoche-Mayboroda Argument

Wave localization in general is a puzzling phenomena as we mentioned last section, in particular the
question about the mechanisms that enable systems of complicated geometries to confine vibration modes
in some subregions of their domain even in the absence of clearly identifiable physical potentials. For the
general study of the localizations in fractal domain, see [SGM91] and related works.
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Figure 9. Ln eigenvectors localization with eigenvalues λ: (a) 5030th eigenvector, λ =
118048.66. (b) 5031th eigenvector, λ = 119678.65. (c) 5032th eigenvector, λ = 119678.65.
(d) 5033th eigenvector, λ = 121460.72. (e) 5100th eigenvector, λ = 185367.41. (f) 5200th
eigenvector, λ = 291364.38. (g) 5300th eigenvector, λ = 392584.97. (h) 5557th eigenvector,
λ = 524999.69. Blue regions indicate the values of an eigenvector in (−ε, ε), red regions in
(ε,∞) and green regions in (−∞,−ε), where ε = 0.01 (Level 4 graph approximation).
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Computations on the Koch Snowflake
Carlos D. Lima, Malcolm H. Gabbard, Gamal Mograby, Luke Rogers, Alexander Teplyaev

University of Connecticut 2018

Abstract
A Laplacian is applied to graph approximations
of the Koch Snowflake. Numerical approxima-
tions indicate a localization of the Laplacian
eigenfunctions at high energies.

Constructing the Snowflake

The Koch Curve K is approximated by a se-
quence of finite graphs, Kn [4]:

(a) K1 (b) K2

Figure 1: First and Second Level Approximations

TheKoch Snowflake, denoted Ω̄, is given by tak-
ing a union of three copies the Koch Curve K.

Energies on Ω̄

We consider a graph Laplacian L generated by the
following Dirichlet energy form:

En(f ) =
∑

p1,p2εVn

cn(p1, p2)(f (p1) − f (p2))2

where cn for two points p1, p2 on Ω̄ is,

cn(p1, p2) =





1 if p1,p2 share an interior edge
4n if p1,p2 share an outer boundary edge
0 if p1,p2 not connected by an edge.

This Laplacian form is defined w.r.t. the measure,

mn(p) =
{

1
9n if p is an interior vertex
1
4n if p is an outer boundary vertex

Eigenfunctions of L on Ω̄

Results from [3] were reproduced by imposing
Dirichlet B.C.:

0
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0.03

-0.01

0
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0.04

Figure 2: First (left) and Thirteenth (right) eigenvectors with
Dirichlet B.C.

The eigenvalues and eigenvectors of L change dras-
tically without Dirichelt B.C.:
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(a) Eigenvector 2
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(b) Eigenvector 13
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(c) Eigenvector 125

-0.02

0

0.02

0.04

(d) Eigenvector 579
Figure 3: Contour plots of eigenvectors without Dirichlet B.C.

Localization of Energy

Motivated through experiments by Sapoval[1] where
they showed focused localization for a similar fractal,
the question was posed as to whether there existed
localization for eigenfunctions of L. Approximations
indeed indicate a form of localization on Ω̄, unlike
the results from [3] with Dirichlet B.C.

Figure 4: First sign of energy localization to the boundary of Ω̄
(left) and a continued “zeroing out" of the inner region(middle
and right) at higher energies.

Features of Localization

The counting function (a) gives a characterizing fea-
ture, a kind of inflection point, indicating a localiza-
tion of energy to the boundary of Ω̄.

(a) Counting Function of
eigenvectors.

���������

-0.04

-0.02

0

0.02

0.04

(b) Eigenvector 5117
Figure 5: Localization of Eigenvectors on Ω̄

The “zeroing out” of the inner region may be due
to the high-frequency oscillations happening on the
boundary of Ω̄.

Figure 6: 2D plot of boundary for eigenvector 5550

The localization on ∂Ω is qualitatively similar
to high-frequency localization seen in whispering
gallery modes. A landscape function, in the style
of Filoche and Mayboroda [2], is generated and cor-
rectly predicts where eigenfunctions localize, seen in
Figure 7.

Figure 7: Landscape Function

Future Work

A more robust characterization of this high-
frequency localization is needed, and more mathe-
matically rigorous formulations are under way.
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Filoche and Mayboroda [FM, FM12] introduced a general theory which demonstrate that both Anderson
(disordered systems) and weak localizations (irregular geometries) originate from the same universal mecha-
nism. The theory gives rise to what they call a landscape Mapping, which we explain briefly with an example
following [FM]. They consider a vibrating system described by the wave equation associated to a suitable
elliptic differential operator L on an open bounded set Ω ⊂ Rn and for the sake of brevity they impose
Dirichlet boundary conditions. By investigating the eigenvalue problem for L,

Lφ(x) = λφ(x), x ∈ Ω, u|∂Ω = 0,

they demonstrate that eigenfunctions are controlled by the landscape mapping defined for x ∈ Ω,

(5.1) u(x) :=

∫

Ω

|G(x, y)|dy,
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Figure 10. The high frequency landscape vector attains just the following two values the
boundary vertices 527360 and 524288. It is constant on the interior vertices with the value
157464. (Level 4 graph approximation)

where G(x, y) is the Green’s function associated to L with Dirichlet boundary conditions. For a normalized
eigenfunction φ with respect to the uniform norm, i.e. supx∈Ω |φ(x)| = 1, corresponding to the eigenvalue λ,
they prove the inequality,

(5.2) |φ(x)| ≤ λ

∫

Ω

|G(x, y)|dy = λ u(x).

Subsequently they show that a graphical representation of the landscape mapping u(x) reveals usually a
complex partition of the domain into subregions and thereby helping to predict possible locations of localized
eigenfunctions. The idea is to track the low values of the landscape mapping u(x) and by doing so they



1. Convergence of eigenvalues in fractal domains
Theorem ( Hinz, Rozanova-Pierrat, T. )
Let n, D, α, γ, ε, d , (Ωm)m and (µm)m be a a sequence of
admissible domains. Suppose that limm Ωm = Ω in the Hausdorff
sense and in the sense of characteristic functions and limm µm = µ
weakly. There is a sequence (mk )∞k=1 with mk ↑ +∞ such that the
following hold.

(i) We have limk→∞ PΩmk
◦ Ĝ

Ωmk ,µmk ,∗
α,γ = PΩ ◦ ĜΩ,µ,∗

α,γ in operator
norm.

(ii) If 0 < a < b are in the resolvent set of −LΩ,µ,∗
γ , then

limk→∞ π(a,b)(Ωmk , µmk , ∗) = π(a,b)(Ω, µ, ∗) in operator norm.

(iii) The spectra of the operators −LΩmk ,µmk ,∗
γ converge to the

spectrum of −LΩ,µ,∗
γ in the Hausdorff sense. The eigenvalues

λn(Ω, µ, ∗) of the operator −LΩ,µ,∗
γ are exactly the limits as

k → ∞ of sequences of the eigenvalues of the operators
−LΩmk ,µmk ,∗

γ ,

λn(Ω, µ, ∗) = lim
k→∞

λn(Ωmk , µmk , ∗). (2)



Ω+
k

Ω−
k

∂Ω

Figure 1: Dyadic approximations of a Von Koch snowflake (∂Ω, in blue) in R2. The interior
approximation Ω−

k lies inside the green dashed line; the exterior approximation Ω+
k lies

outside the red dotted line.

Proposition 3.3. Let Ω be an arbitrary bounded domain of Rn such that Ω
c

is connected
too. Then Ω−

k ⊔ Ω+
k −→ Rn\∂Ω.

Proof. From Remark 3.2, let k0 ∈ N be such that (Ω−
k )k≥k0 is non-decreasing. Then it holds:

Ω−
k −−−−→

k→∞
Ω−

∞ :=
⋃

k≥k0
Ω−
k ⊂ Ω.

Let x ∈ Ω. Then d(x, ∂Ω) > 0. In the same way as for (5), there exists k̃ ≥ k0 so that:

{x} ∪ Ω−
k0

⊂ Ω−
k̃
.

Hence x ∈ Ω−
∞, and Ω−

∞ = Ω.
To show Ω+

k → Ω
c
, we proceed in the same way considering x ∈ Ω

c
a path on Ω

c
linking

x and a large square containing Ω.

Remark 3.4. Lemma 3.1, Remark 3.2 and Proposition 3.3 can easily be generalized in the
case of an arbitrary (potentially unbounded) open set Ω such that Ω and Ω

c
have a finite

number of connected components.

3.1 Spaces of functions on Rn

Let us define the following spaces:

H1
∂Ω(Rn) :=

{
u ∈ L2(Rn)

∣∣ ∇u|Rn\∂Ω ∈ L2(Rn\∂Ω)n
}
,

H1
∆Ωk

(Rn) :=
{
u ∈ L2(Rn)

∣∣∣ ∇u|Ω−
k ⊔Ω+

k
∈ L2(Ω−

k ⊔ Ω+
k )
n
}
.

Those spaces consist of functions L2 on the whole space, with gradient L2 away from the
boundary. In particular, they do not contain distributions which present a Dirac on the
boundary.

From Proposition 3.3, it appears:

H1
∆Ωk

(Rn) ↘
k→∞

H1
∂Ω(Rn),

4



2. Discrete spectrum for Dirichlet forms

Theorem (Carfagnini, Gordina, T.)
Let U be an open bounded subset of X , and PU

t be the semigroup
associated to (E,DE) with the infinitesimal generator AU . Assume
that pt(x, y) exists for all t and for m-a.e. x, y ∈ X . If there exists a
tU > 0 such that

MU (tU) = ess sup
(x,y)∈U×U

ptU (x, y) <
1

m(U)2
, (3)

then the spectrum of −AU is discrete and λ1 > 0.



3. Small deviations

Theorem (Carfagnini, Gordina, T.)
Let {Pt}t⩾0 be a strongly continuous contraction semigroup on
L2(X ,m). Let x ∈ X and assume that PB1(x)

t is irreducible. Assume
that the heat kernel pt(x, y) exists for all t and for all x, y ∈ X and
that

pt(x, y) ⩽ c t−
α
β

for any t, x , and y . Moreover, assume that there exists a t0 such that
pt0(x, y) is continuous for x, y ∈ X . If X x

t is self-similar then

lim
ε→0

eλ1
t

εβ Px

(
sup

0⩽s⩽t
d(Xs, x) < ε

)
= c1φ1(x), (4)

where λ1 > 0 is the spectral gap of A restricted to the unit ball B1(x),
and φ1 is the corresponding positive eigenfunction.



4. Convergence of sub-Riemannian eigenvalues?
▶ M. Carfagnini, M. Gordina: * Spectral gap bounds on H-type

groups, 14 pp. * On the Onsager-Machlup functional for the
Brownian motion on the Heisenberg group, 24 pp. * Dirichlet
sub-Laplacians on homogeneous Carnot groups: spectral
properties, asymptotics, and heat content, 30 pp., IMRN, 2023.
* Small deviations and Chung’s law of iterated logarithm for a
hypoelliptic Brownian motion on the Heisenberg group, 24 pp.,
Trans. AMS, 2022.

▶ N. Eldredge, M. Gordina, E. Le Donne, S. Li, Notions of null sets
in infinite-dimensional Carnot groups, 37 pp.

▶ M. Gordina, T. Melcher, J. Wang, Large deviations principle for
sub-Riemannian random walks, 40 pp.

▶ L. Gao, M. Gordina, Complete modified logarithmic Sobolev
inequality for sub-Laplacian on SU(2), 23 pp.

▶ M. Gordina, L. Luo, Logarithmic Sobolev inequalities on
non-isotropic Heisenberg groups, 30 pp., JFA, 2022.

▶ M. Gordina, M. Röckner, A. Teplyaev, Singular perturbations of
Ornstein-Uhlenbeck processes: integral estimates and Girsanov
densities, 24 pp., PTRF, 2020.

▶ N. Eldredge, M. Gordina, L. Saloff-Coste, Left-invariant
geometries on SU(2) are uniformly doubling, GAFA, 2018, 28,
pp. 1321–1367.



5. Convergence of the re-normalized eigenvalues of
small balls in SU(2) to corresponding eigenvalues in
the unit ball of H

Here H is the Heisenberg group, which is a re-scaled limit of SU(2)
near the identity.

Theorem (Carfagnini, Gordina, T.)
Let 0 < λH

1 < λH
2 ⩽ λH

3 ⩽ ... be the Dirichlet eigenvalues in the unit
ball BH

1 of H, counted with multiplicity. Let 0 < λr
1 < λr

2 ⩽ λr
3 ⩽ ... be

the Dirichlet eigenvalues in the r -ball BSU(2)
r of SU(2), counted with

multiplicity. Then for each n ⩾ 1 we have

lim
r→0

r2λr
n = λH

n . (5)



6. Convergence of the Dirichlet heat kernels

Let pBH
1

t (·, ·) be the Dirichlet heat kernel in the unit ball BH
1 of H, and

pBSU(2)
r

t (·, ·) be the Dirichlet heat kernel in the r -ball BSU(2)
r of SU(2),

where the balls are centered at the identity of the groups.

Theorem (Carfagnini, Gordina, T.)
For each t > 0

lim
r→0

r4 pBSU(2)
r

r2t

(
Φ−1 (δHr (x)

)
,Φ−1 (δHr (x)

))
= pBH

1
t (x, y). (6)

uniformly for x, y ∈ BH
1 .



7. Local convergence of stochastic flows
Let

gBSU(2)
r

s :=

{
gs s < τBSU(2)

r

∂ s ⩾ τBSU(2)
r

(7)

where gs denotes a hypoelliptic Brownian motion on SU(2), and

τBSU(2)
r

:= inf
{

s > 0, gs /∈ BSU(2)
r

}
. (8)

Similarly, let

X BH
r

s :=

{
Xs s < τBH

r

∂ s ⩾ τBH
r

(9)

where Xs denotes a hypoelliptic Brownian motion on H, and

τBH
r
:= inf

{
s > 0, Xs /∈ BH

r

}
. (10)



Theorem (Carfagnini, Gordina, T.)
For any 0 < r < 1

7 r1/7 there is a continuous stochastic process Y r
s in

H such that

Y r
s :=: δH1/rΦ

(
gBSU(2)

3r
r2s

)
(11)

in the sense of conditional probability distributions on the event
A3r := {s < τBH

3r
} and

lim
r→0

1A3r sup
0⩽s⩽T

|Y r
s − Xs| = 0 (12)

in probability.
We use Theorem 3.3.1, page 76, in Kunita 1986 Lectures on
stochastic flows and applications, Tata Institute of Fundamental
Research Lectures on Mathematics and Physics.



New Frontiers: Layer potentials

u(x) =
∫

S
ρ(y)

∂

∂ν
P(x, y)dσ(y)

v(x) = G ∗ f =

∫

Rn
g(x, y)dµ(y)



Riemann-Hilbert and Poincare variational problems

Find a function in C, unanlytic outside of a curve, with
prescribed values and jumps on the curve.
Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Calssical applications:
▶ Integrable models, inverse scattering or inverse spectral problem
▶ the inverse monodromy problem for Painlevé equations
▶ Orthogonal polynomials, Random matrices
▶ Combinatorial probability
▶ Algebraic geometry, Donaldson–Thomas theory



Hilbert transform

H(u)(t) =
1
π

p.v .
∫

R

u(τ )
(t − τ )

dτ

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Closely connected to the Riemann-Hilbert and Poincare variational
problems and is extensively used in analysis and in sygnal
processing.



Maxwell and other vector equations
We develop new mathematical tools in the vector case in order to
study and solve Maxwell’s equations in non-Lipschitz, possibly fractal
domains. To that extent, we would like to show here one use of those
tools with the time-harmonic Maxwell problem completed with a
homogeneous Dirichlet boundary condition, which becomes with our
notations:

{
curl(µ−1curl E) − ω2εE = f on Ω
TrT (E) = 0 on ∂Ω

where f ∈ L2(Ω) and we look for E ∈ H(curl,Ω).
This problem is equivalent to the following variational formulation:
Find E ∈ H0(curl,Ω) such that ∀F ∈ H0(curl,Ω):

(µ−1curl E, curl F) − ω2(εE, F) = (f, F).

Research in progress: Anna Rozanova-Pierrat (CentraleSupélec),
Patrick Ciarlet (ENSTA Paris) et al.



7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 4–8, 2022

Fractals 7 Resources
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In Memory of Professor Robert Strichartz

We will be dedicating the entire conference to Professor Strichartz.   A special session will be scheduled during the

conference for all to attend and re�ect on their thoughts and memories of Bob.  Bob is appreciated and recognized

for his organizing of the Fractals Conference Community in 2002. He will be profoundly missed by family, friends,

colleagues, and most of all, the students he mentored and in�uenced throughout his career. 

A message from the Cornell Department of Mathematics Chair, Tara Holm:

7th Cornell Conference on Analysis, Probability, and Mathematical Physics on
Fractals

About Analysis and Probability on Fractals Fractals 6

7th Cornell Conference on Analysis, Probability, and Mathematical Phys... https://math.cornell.edu/7th-cornell-conference-analysis-probability-an...
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8th Cornell Conference on Analysis, Probability,
and Mathematical Physics on Fractals:
June 2025

Everybody is invited !



Thank you for your attention!

Picture: the Sierpinski-flower

UConn REU 2023: Fractal Eigenmaps

Bernard Akwei, Rachel Bailey, Luke Rogers et al.
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