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Abstract:

Dirichlet form analysis gives powerful tools to study diffusions in
non-smooth settings, and Mosco convergence is a standard
approach to study approximations. However, Mosco convergence
may not be sufficient to understand finer properties, such as
convergence of eigenvalues and small deviations of diffusion
processes. The talk will present two recent results that strengthen
Mosco convergence of Dirichlet forms. One result deals with
Euclidean extension domains with irregular, or fractal, boundaries
(joint work with Michael Hinz and Anna Rozanova-Pierrat). The other
result deals with small deviations in sub-Riemannian situations (joint
work with Marco Carfagnini and Masha Gordina).



M. Hinz, A. Teplyaev. Closability, regularity, and
approximation by graphs for separable bilinear forms.

Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
441 (Veroyatnost i Statistika. 22):299-317, 2015. Springer: J. Math.
Sci. (2016) 219 807—820 doi:10.1007/s10958-016-3149-7

We consider a countably generated and uniformly closed algebra of
bounded functions. We assume that there is a lower semicontinuous,
with respect to the supremum norm, quadratic form and that normal
contractions operate in a certain sense. Then we prove that a
subspace of the effective domain of the quadratic form is naturally
isomorphic to a core of a regular Dirichlet form on a locally compact
separable metric space.

We also show that any Dirichlet form on a countably generated
measure space can be approximated by essentially discrete Dirichlet
forms, i.e. energy forms on finite weighted graphs, in the sense of
Mosco convergence, i.e. strong resolvent convergence.
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Continuity Equations on Fractals.
Michael Hinz, Waldemar Schefer (Bielefeld University)

In this talk we study first order differential operators on fractals that
take func- tions into functions. These operators generalize first order
derivatives on p.c.f. fractals introduced by M. Hino as the derivatives
of energy finite functions with respect to a minimal energy-dominant
reference function. Here we may also allow minimal energy-dominant
differential one-forms as reference elements. In general the domains
of such first order differential operators are larger than the domain of
the underlying Dirichlet form. We prove an integration by parts for-
mula and well-posedness results for continuity equations on fractals.
As a key tool we use recent work of W. Arendt, |. Chalendar, R.
Eymard on boundary quadruples.



Derivations and Dirichlet forms on fractals.
M. lonescu, L. G. Rogers, A. Teplyaev, JFA 2012

We study derivations and Fredholm modules on metric spaces with a
local regular conservative Dirichlet form. In particular, on finitely
ramified fractals, we show that there is a non-trivial Fredholm module
if and only if the fractal is not a tree (i.e. not simply connected). This
result relates Fredholm modules and topology, and refines and
improves known results on p.c.f. fractals. We also discuss weakly
summable Fredholm modules and the Dixmier trace in the cases of
some finitely and infinitely ramified fractals (including non-self-similar
fractals) if the so-called spectral dimension is less than 2. In the
finitely ramified self-similar case we relate the p-summability question
with estimates of the Lyapunov exponents for harmonic functions and
the behavior of the pressure function.



Theorem 5.16 (Non triviality of Fredholm modules for
finitely ramified cell structures)

The Fredholm module (H, F) is non trivial,
if and only if X is not a tree.

The result stated in [F. Cipriani and J.-L. Sauvageot, 2009] for p.c.f.
fractals omitted the distinction between trees and non-trees; in
particular, [CS, Proposition 4.2] does not hold for the unit interval,
which is a p.c.f. self-similar set, in the sense of Kigami.



Harmonic coordinates on fractals with finitely ramified
cell structure. Teplyaev CJM (2008)

Theorem 3. Suppose that all n-harmonic functions are continuous.
Then £ is a local regular Dirichlet form (with respect to any measure
that charges every nonempty open set).

Proof. The regularity of £ is proved in [J. Kigami, Harmonic analysis
for resistance forms. J. Functional Analysis 204 (2003), 399-444.] ...

erratum: my theorem proves locality under assumtion that £ is
regular, which was investigated by Kigami, Kumagai et al.



Plan of the talk:

Mosco convergence, strong and norm resolvent convergence
Introduction and motivation, analysis on “fractafolds™*
Physics motivation
Heat Kernel Estimates and Dirichlet Forms
Wave absorption: numerical shape optimization
Wave absorption: theoretical shape optimization
Equations used in architecture
Wentzell Boundary conditions
Theoretical study
Discrete approximations
1. Convergence of eigenvalues in fractal domains
2. Discrete spectrum for Dirichlet forms
3. Small deviations
4. Convergence of sub-Riemannian eigenvalues?
6. Convergence of the Dirichlet heat kernels
7. Local convergence of stochastic flows
New Frontiers: Layer potentials
Riemann-Hilbert and Poincare variational problems
Hilbert transform
Maxwell and other vector equations



Mosco convergence, strong and norm resolvent
convergence

» Mosco, Umberto Convergence of convex sets and of solutions of
variational inequalities. Advances in Math. 3 (1969), 510-585.

» Mosco, Umberto Composite media and asymptotic Dirichlet
forms. J. Funct. Anal. 123 (1994), no. 2, 368—421.

Kato, Tosio
Perturbation theory for linear operators. Springer-Verlag 1966.

[Reed-Simon 1972]: For non-negative closed quadratic forms,

» Mosco convergence is equivalent to the strong resolvent
convergence,

> but is weaker than the norm resolvent convergence.



Mosco convergence does not imply convergence of
the spectrum

M-lim E,, = F or E,—>F.
n— oo n—oo

» x, € L? converging weakly to x € L2,
Iinnlinf En(xn) > F(x);

» for each x € L2 there exists an approximating sequence of
elements x,, € L2, converging strongly to x, such that
limsup Ep(xn) < F(x).

n—oo
Example:
L2 := ¢*(Z,)

En((Xk)) 1= Yo [Xel*———E =0

o(En) = {0,1} # {0} = o(E)



Introduction and motivation, analysis on “fractafolds™

» *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

» A “fractafold” is to a fractal what
a manifold is to a Euclidean half-space.

This is a part of the broader program to develop probabilistic, spectral
and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



What is the first appearance of fractals is science?

In a sense, the simplest possible fractal appears in the famous Zeno’s
paradoxes: Zeno of Elea (c. 495 — ¢. 430 BC) "Achilles and the
Tortoise"
1. Achilles runs to the tortoise’s starting point while the tortoise
walks forward.
2. Achilles advances to where the tortoise was at the end of Step 1
while the tortoise goes yet further.
3. Achilles advances to where the tortoise was at the end of Step 2
while the tortoise goes yet further.
Etc.
Apparently, Achilles never overtakes the tortoise, since however
many steps he completes, the tortoise remains ahead of him.



Dichotomy paradox: that which is in locomotion must arrive at the
half-way stage before it arrives at the goal. In a race, the quickest
runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must
always hold a lead. [Aristotle, Physics VI:9, 239b10, 239b15]

*k%k

In 1821, Augustin-Louis Cauchy proved that, for —1 < x < 1,

a
at+ax+ax®+ax®+..= T S(a, x)

This is a weakly-self-similar sum satisfying a re-normalization
“fixed-point” functional equation

S(a,x) =a+ x- S(a, x)






MATH EMATICS AND GEOMETRY: Decomposition of pyramids
Red pencil, pen and ink, ¢. 1515

The sheet shows several diagrams of pyramids broken down intosmaller

ones. Thecaption above the major pyramid drawing states that each
pyramidwith a square base 'is resolved into eight pyramids of igures

similar toitswhole" The same concept is reiterated by the smaller diagrom
abovethe larger pyramid. Below, thereis anothersmallsketchwitha
captionexplaining how tosquarea pyramid. Underthe base ofthe main
pyramid thereis a note that alludes to @ German craftsman, whie

immediately to the side there are grids

that could be exercisesinperspective.






Cantor, Sierpinski, Julia, Mandelbrot

» How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension (Mandelbrot 1967).
The coastline paradox: the measured length of a stretch of coastline
depends on the scale of measurement.

Fractal titanium oxide under inverse 10-ns laser deposition in air and
water. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, Z. Zhai
Applied Physics A volume 123, Article number: 253 (2017)
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Fig. 5 Surface morphology of titanium with the laser energy of b shows a typical fractal structure unit, and inset ¢ is size distribution
86 mJ, scanning speed of 0.01 mm/s, and scan length of 10 mm. Inset histograms of 50 fractal structure units
a depicts the surface morphology beyond laser irradiation zone. Inset
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Non-quantized penetration of
magnetic field in the vortex
state of superconductors

A. K. Geim*t, S. V. Dubonos*, I. V. Grigorieva*t, K. S. Novoselov*,
F. M. Peeterss & V. A. Schweigerts||

* University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
T Department of Physics, The University of Manchester, M13 9PL Manchester, UK
¥ Institute for Microelectronics Technology, 142432 Chernogolovka, Russia

§ Department of Physics, University of Antwerpen (UIA), B-2610 Antwerpen,
Belgium

| Institute of Theoretical and Applied Mechanics, 630090 Novosibirsk, Russia

As first pointed out by Bardeen and Ginzburg in the early sixties"?,
the amount of magnetic flux carried by vortices in super-
conducting materials depends on their distance from the sample
edge, and can be smaller than one flux quantum, ¢, = h/2e (where
h is Planck’s constant and e is the electronic charge). In bulk
superconductors, this reduction of flux becomes negligible at sub-
micrometre distances from the edge, but in thin films the effect
may survive much farther into the material®*. But the effect has
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Superconducting disk with magnetic coating: Re-entrant Meissner
phase, novel critical and vortex phenomena

M. V. MILoSEVIE® | M. T. I. RAKIB and F. M. PEETERS(®)
Departement Fysica, Universiteit Antwerpen - Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
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PACS 74.78.Na — Mesoscopic and nanoscale systems
PACS 74.25.0p — Mixed state, critical fields, and surfa

heaths

Abstract — Within the Ginzburg-Landau formalism, we study the mixed state of a superconduct-
ing disk surrounded by a magnetic ring. The stray field of the magnet, concentrated at the rim of
the superconducting disk, favors ring-like arrangement of induced vortices, to the point that even
a single vortez state ezhibits asymmetry. A novel route for the destruction of superconductivity
with increasing magnetization of the magnetic coating is found: first all vortices leave the sample,
and are replaced by a re-entered Meissner phase with a full depression of the order-parameter
at the sample edge; subsequently, superconductivity is then gradually suppressed from the edge
inwards, contrary to the well-k surface supercond: . When exposed to an additional
homogeneous magnetic field, we find a field-polarity-dependent vortex structure in our sample
—for all vorticities, only giant- or multi-vortex states are found for given polarity of the
external field. In large samples, the number of vortex shells and number of fluz quanta in each of
them can be controlled by the parameters of the magnetic coating.

Copyright © EPLA, 2007



Novel vortex ph a in a superconducting disk with ic coating

M=8.7H,, M=10.0H,, M=10.7H,,
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Fig. 2: The free energy of the states with different vorticity L as a function of the magnetization of the magnetic coating. Insets
show the Cooper-pair density contourplots of the cor ing states. (a-c) Superconducting phase and (d-f) [¢/[*-density
plots, illustrate simultancous vortex exit and suppression of superconductivity at the rim of the superconducting disk for high
magnetization.




In our theoretical treatment of this system, we use the
non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V', we minimize, with
respect to the order parameter 1, the GL free energy

dv S - 1
= [ (1609 = T w2 = o + 1ol ),
)



Minimization of eq. (2) leads to equations for the order
parameter and superconducting current

- P

(—iV = A2 =(1 - )y, (3)
7=S@WVy) - ¢4, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/¢ in each direction. We then
start from randomly generated initial distribution of ,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state!(y) =1) or the normal state () ~0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.



M. V. Milosevi¢ et al.
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Fig. 3: Free energy diagram for a large superconducting disk with thin magnetic coating. Insets show the [t[*-density plots of
distinct vortex states.
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Fig. 4: (a) Free energy of a superconducting disk with magnetic coating as a function of applied homogeneous magnetic field.
Insets show the Cooper-pair density plots for indicated states. (b) Same as (a), but for demagnetized coating. In (b), dashed
lines denote multi-vortex and solid lines giant-vortex configurations.
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Fig. 5: The |y)|*-density plots illustrating the arrangement of vortex shells in a large superconducting disk for L =53 and

L =60, with magnetic coating with (a,c) negative (M = —8H,s), or (b,d) positive (M = 8H,) magnetization.



GEOMETRICAL DESCRIPTION OF VORTICES IN
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4.2 The Bogomol'nyi identities

For the special value k = Lz’ the equations for ¢ and A can be reduced
to first order differential equations. This special point was first used by
Sarma [41] in his discussion of type-I vs. type-II superconductors and then
identified by Bogomol’'nyi [40] in the more general context of stability and
integrability of classical solutions of some quantum field theories. This
special point is also called a duality point. We first review some properties of
the Ginzburg-Landau free energy at the duality point. We use the following
identity true for two dimensional systems

(V= i)y = Dy +V x J'+ Biy[? (64)

where 7= Im(w*ﬁw) — WPK is the current density and the operator D is
defined as D = 9, + 10y — i(Az + iAy). This relation is a relative of the
Weitzenbdck formula (61). At the duality point x = % the expression (63)

for F can be rewritten using (64) as

f:/Q(%|B—1+\¢\2\2+|D¢|2) +l€ﬂ(i+x¥).&z (65)



Physics motivation

» R. Rammal and G. Toulouse, Random walks on fractal structures
and percolation clusters. J. Physique Letters 44 (1983)

» R. Rammal, Spectrum of harmonic excitations on fractals. J.
Physique 45 (1984)

» E. Domany, S. Alexander, D. Bensimon and L. Kadanoff,
Solutions to the Schrédinger equation on some fractal lattices.
Phys. Rev. B (3) 28 (1984)

» Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on

fractals. I. Quasilinear lattices. Il. Sierpiriski gaskets. Ill. Infinitely
ramified lattices. J. Phys. A 16 (1983)17 (1984)



6/14/2014 Frangois Englert - Wikipedia, the free encyclopedia

Francois Englert

From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [agleg]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007




Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.



al. / Metric space-time

F. Englert et
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al 3-fractal.

of a 2-dimension

Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin - to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0y, 0, and 0, associated to 0-dimensional
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.



week ending
PRL 95, 171301 (2005) PHYSICAL REVIEW LETTERS 21 OCTOBER 105

The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantim field thearv.— surements of the larce-seale dimensionality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dy(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.

Random Geometry and Quantum Gravity

A thematic semestre at Institut Henri Poincaré

14 April, 2020 - 10 July, 2020

Organizers : John BARRETT, Nicolas CURIEN, Razvan GURAU,
Renate LOLL, Gregory MIERMONT, Adrian TANASA
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension d; and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2+d), d,, = 2+d, and the UV-fixed
point regime where dy = d/2,d,, = 4. On the length scales covered by three-dimensional
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT). Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects




Fractal space-times under the microscope: A
Renormalization Group view on Monte Carlo data

(Martin Reuter, Frank Saueressig):

Three scaling regimes of the effective space-times of asymptotically
safe Quantum Einstein Gravity (QEG):

1. aclassical regime ds = d, dy, = 2,

2. a semi-classical regime ds = 2d/(2 + d), dy =2+ d,

3. the UV-fixed point regime ds = d/2, d, = 4.
On the length scales covered by three-dimensional Monte Carlo
simulations, the resulting spectral dimension is in very good
agreement with the data and provides a natural explanation for the
apparent puzzle between the short distance behavior of the spectral
dimension reported from Causal Dynamical Triangulations (CDT),
Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.

» Mathav Murugan: dy = df consistent with ds = 2ds/dy = 2

» Growth and percolation on the uniform infinite planar
triangulation by Omer Angel (GAFA 2003)

» Anomalous diffusion of random walk on random planar maps by
Ewain Gwynne and Tom Hutchcroft (PTRF 2020)



Heat Kernel Estimates and Dirichlet Forms

dw
d R dw—1
9y )
tdw—1

1
pi(x,y) ~ 1dr/dy SXP (

distance ~ (time)d17

dy = Hausdorff dimension

1 = d,, = “walk dimension” (y=diffusion index)

2d; _
dv —

2

ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980'—)



Stability Theorem (Barlow, Bass, Kumagai (2006))

Under natural assumptions on the MMD (geodesic Metric Measure
space with a regular symmetric conservative Dirichlet form), the
sub-Gaussian heat kernel estimates are stable under rough
isometries, i.e. under maps that preserve distance and energy up to
scalar factors.

Gromov -Hausdorff + energy



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any
generalized Sierpinski carpet there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries.

Therefore there is a unique symmetric Markov process and

a unique Laplacian.

Moreover, the Markov process is strong Feller and its transition

density satisfies sub-Gaussian heat kernel estimates.

Main difficulties:If it is not a cube in R”, then

>
>

>
>

v

dS < df! dw > 2

the energy measure and the Hausdorff measure are mutually
singular;

the domain of the Laplacian is not an algebra;

if d(x, y) is the shortest path metric, then d(x, -) is not in the
domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

Lipschitz functions are not of finite energy;

in fact, we can not compute any functions of finite energy;
Fourier and complex analysis methods seem to be not
applicable.



Wave absorption: numerical shape optimization

» F. Magoules, T.P. Kieu Nguyen, P. Omnes, A. Rozanova-Pierrat,
Optimal absorption of acoustic waves by a boundary.
SIAM J. Control Optimization 59 (2021)
+ more numerical results
» C. Bardos, D. Grebenkov, A. Rozanova-Pierrat,
Short-time heat diffusion in compact domains with discontinuous
transmission boundary conditions.
Math. Mod. Meth. Appl. Sci. 26 (2016)
> A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval,
Faster diffusion across an irregular boundary.
Phys. Rev. Lett. 108 (2012)
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Wave absorption: theoretical shape optimization

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Non-Lipschitz uniform
domain shape optimization in linear acoustics.
SIAM J. Control Optim. 59 (2021)

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Boundary value
problems on non-Lipschitz uniform domains: Stability,
compactness and the existence of optimal shapes.
Asymptotic Analysis (2023)



Equations used in architecture

» M. Hinz, F. Magoulés, A. Rozanova-Pierrat, M. Rynkovskaya, A.
Teplyaev, On the existence of optimal shapes in architecture.
Applied Mathematical Modelling 94 (2021)

Given a domain  C RN and a vector field v e W'2(Q)N we denote
the symmetric part of its gradient by

e(v) = % (Vv + (Vv)).

Let A € L°°(Q, M$(c, B)) and write o(v) = Ae(v), v e Wh2(Q)N.
We are interested in solutions u € W'2(Q)N of BVP:

—divo(u) =f inQ,
u =0 onrly, (1)
o(u-n =g onTlye.



Wentzell Boundary conditions

> A. Wentzell. On boundary conditions for multi-dimensional
diffusion processes. Theor. Probability Appl. (1959)

E(u) = /Q IV ul2dx + Eoa(u)



Theoretical study

» M. R. Lancia, P. Vernole,
Venttsel’ problems in fractal domains
J. Evol. Equ. 14 (2014), no. 3, 681-712.

» M. Hinz, M. R. Lancia, A. Teplyaev, P. Vernole, Fractal snowflake
domain diffusion with boundary and interior drifts, J. Math. Anal.
Appl. 457 (2018)

E(u) = /Q IV uldx + Eoa(u)



Discrete approximations

» M. Gabbard, C. Lima, G. Mograby, L. G. Rogers, A. Teplyaeyv,
Discretization of the Koch Snowflake Domain with Boundary
and Interior Energies, SEMA SIMAI Springer Series ICIAM2019
Fractals in engineering: Theoretical aspects and Numerical
approximations (2021)

E(u) = /Q IV uldx + Eoa(u)
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FIGURE 5. Contour Plots of the Ei ors of Ly, corr ding to ei lues A: (a) 4th

eigenvector, A = 48.1. (b) 5th eigenvector, A = 48.1. (c) 6th eigenvector, A = 85.1. (d) 8th
eigenvector A = 125.4. (e) 1153rd eigenvector A = 49965.7. (f) 1157th eigenvector A = 50156.6.
(g) 1161st eigenvector, A = 50188.8 and (h) 1162nd cigenvector, A = 50188.83. Blue regions
indicate the values of an eigenvector in (—¢,€), red regions in (e,00) and green regions in
(=00, =€), where ¢ = 0.01. (Level 4 graph approximation)
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FIGURE 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and L,
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and L,, (blue) (Level 4 graph approximation).



FIGURE 7. (a) The 5,028th eigenvector of L,,, A = 118038.02. (b) The last Dirichlet eigenvec-
tor, A = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors
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FIGURE 8. The last L, eigenvector, A = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).
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FIGURE 9. L, eigenvectors localization with eigenvalues A:
118048.66. (b) 5031th eigenvector, A = 119678.65. (c) 5032th eigenvector, A = 119678.65.
(d) 5033th eigenvector, A = 121460.72. (e) 5100th eigenvector, A = 185367.41. (f) 5200th
eigenvector, A = 291364.38. (g) 5300th eigenvector, A = 392584.97. (h) 5557th eigenvector,
A = 524999.69. Blue regions indicate the values of an eigenvector in (—¢,€), red regions in
(€,50) and green regions in (—oc, —¢), where ¢ = 0.01 (Level 4 graph approximation).

(a) 5030th eigenvector, A\ =
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1. Convergence of eigenvalues in fractal domains
Theorem ( Hinz, Rozanova-Pierrat, T. )
Letn, D, o, v, ¢, d, (2m)m and (um)m be a a sequence of
admissible domains. Suppose that limpy, Q,;, = Q in the Hausdorff
sense and in the sense of characteristic functions and limp, pm = p

weakly. There is a sequence (mg)32, with my 1 oo such that the
following hold.

(i) We have limk_,o Pq,, © Gamotmo* — pg o G2 in operator
norm.
(i) If0 < a < b are in the resolvent set of —L#*, then
limg oo T(a,0) (Rmycs mys ¥) = T(a,0)(2, p, *) in operator norm.
(iiiy The spectra of the operators —LS’"“’“ ™™ converge to the
spectrum of —£3’“’* in the Hausdorff sense. The eigenvalues

An(R, 1, *) of the operator — L2#* are exactly the limits as

k — oo of sequences of the eigenvalues of the operators
Qinye sy o
_c'y 3 'k

H

)\n(Qv oy *) = kimoo )\n(kaa Hmyy *)' (2)






2. Discrete spectrum for Dirichlet forms

Theorem (Carfagnini, Gordina, T.)

LetU be an open bounded subset of X, and P}‘ be the semigroup
associated to (£, D¢) with the infinitesimal generator Ay,. Assume

that pi(x, y) exists for all t and for m-a.e. x,y € X. If there exists a
t,, > 0 such that

y) = esss (X Y) < ——, 3
M, (1) (x’y)e;supr( y) m()? @)

then the spectrum of — Ay, is discrete and Ay > 0.



3. Small deviations

Theorem (Carfagnini, Gordina, T.)

Let {P:}+>0 be a strongly continuous contraction semigroup on
L2(x, m). Let x € X and assume that Pf‘ ) js irreducible. Assume

that the heat kernel pi(x, y) exists for all t and for all x,y € X and
that

pi(x,y) <ct 5

for any t, x, and y. Moreover, assume that there exists a ty such that
Py (X, y) is continuous for x,y € X. If X[ is self-similar then

e—0 0<s<t

lim eer pX ( sup d(Xs, x) < s) = c1p1(X), (4)

where A1 > 0 is the spectral gap of A restricted to the unit ball B1(x),
and 1 is the corresponding positive eigenfunction.



4. Convergence of sub-Riemannian eigenvalues?

» M. Carfagnini, M. Gordina: * Spectral gap bounds on H-type
groups, 14 pp. * On the Onsager-Machlup functional for the
Brownian motion on the Heisenberg group, 24 pp. * Dirichlet
sub-Laplacians on homogeneous Carnot groups: spectral
properties, asymptotics, and heat content, 30 pp., IMRN, 2023.
* Small deviations and Chung'’s law of iterated logarithm for a
hypoelliptic Brownian motion on the Heisenberg group, 24 pp.,
Trans. AMS, 2022.

» N. Eldredge, M. Gordina, E. Le Donne, S. Li, Notions of null sets
in infinite-dimensional Carnot groups, 37 pp.

» M. Gordina, T. Melcher, J. Wang, Large deviations principle for
sub-Riemannian random walks, 40 pp.

» L. Gao, M. Gordina, Complete modified logarithmic Sobolev
inequality for sub-Laplacian on SU(2), 23 pp.

» M. Gordina, L. Luo, Logarithmic Sobolev inequalities on
non-isotropic Heisenberg groups, 30 pp., JFA, 2022.

» M. Gordina, M. Réckner, A. Teplyaev, Singular perturbations of
Ornstein-Uhlenbeck processes: integral estimates and Girsanov
densities, 24 pp., PTRF, 2020.

» N. Eldredge, M. Gordina, L. Saloff-Coste, Left-invariant
aeometries on SU(2) are uniformlv doublina: GAFA 2018 28



5. Convergence of the re-normalized eigenvalues of
small balls in SU(2) to corresponding eigenvalues in
the unit ball of H

Here H is the Heisenberg group, which is a re-scaled limit of SU(2)
near the identity.
Theorem (Carfagnini, Gordina, T.)

Let0 < Al < AY < Af < ... be the Dirichlet eigenvalues in the unit
ball B§' of H, counted with multiplicity. Let0 < Aj < X§ < A < ... be

the Dirichlet eigenvalues in the r-ball B;'® of SU(2), counted with
multiplicity. Then for each n > 1 we have

lim rAL = 2E, (5)

r—0



6. Convergence of the Dirichlet heat kernels

Let pfgﬁ(-, -) be the Dirichlet heat kernel in the unit ball B! of H, and
SU(2

p% (., ) be the Dirichlet heat kernel in the r-ball BSY® of SU(2),

where the balls are centered at the identity of the groups.

Theorem (Carfagnini, Gordina, T.)

Foreacht >0

tim r pf,” (0 (8(x)) , 0 (31(x))) = P (X, ). (6)

uniformly for x,y € B



7. Local convergence of stochastic flows
Let

S

gB;su(z) — gs s< TBfU(Z)
0 s> Tgsu@)
r

where gs denotes a hypoelliptic Brownian motion on SU(2), and

Tgsu@ = inf {S >0, gs ¢ BfU(Z)} . (8)
Similarly, let
X2 = {)a( P ©
) 2 TBLrHl

where Xs denotes a hypoelliptic Brownian motion on H, and

gz :=inf{§ >0, Xs ¢ B}'}. (10)



Theorem (Carfagnini, Gordina, T.)

Forany0 < r < %r1 /7 there is a continuous stochastic process Y{ in
H such that

Cimi o o (B
Yg i=:10,,,® (grzs’ ) (11)

in the sense of conditional probability distributions on the event
Az = {s < TBEIr} and

. r _
rll_r:10 1a,, ozlsu\) |Ys — Xs| =0 (12)
in probability.

We use Theorem 3.3.1, page 76, in Kunita 1986 Lectures on

stochastic flows and applications, Tata Institute of Fundamental
Research Lectures on Mathematics and Physics.



New Frontiers: Layer potentials
o
u(x) = [ p(y) 5 Px.y)do(y)

vix) = Gxf= [ gx.ydu(y)



Riemann-Hilbert and Poincare variational problems

Find a function in C, unanlytic outside of a curve, with
prescribed values and jumps on the curve.

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Calssical applications:
> Integrable models, inverse scattering or inverse spectral problem
» the inverse monodromy problem for Painlevé equations
» Orthogonal polynomials, Random matrices
» Combinatorial probability
» Algebraic geometry, Donaldson—Thomas theory



Hilbert transform

u(r) ,
(f—‘r)

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

H()(t) = Lp.v /

Closely connected to the Riemann-Hilbert and Poincare variational
problems and is extensively used in analysis and in sygnal
processing.



Maxwell and other vector equations

We develop new mathematical tools in the vector case in order to
study and solve Maxwell’s equations in non-Lipschitz, possibly fractal
domains. To that extent, we would like to show here one use of those
tools with the time-harmonic Maxwell problem completed with a
homogeneous Dirichlet boundary condition, which becomes with our
notations:

curl(p='curlE) — w?cE=f onQ
Trr(E)=0 on 9N

where f € L?(R2) and we look for E € H(curl, Q).
This problem is equivalent to the following variational formulation:
Find E € Hy(curl, Q) such thatVF € Hy(curl, Q2):

(= 'curl E, curl F) — w?(¢E, F) = (,F).

Research in progress: Anna Rozanova-Pierrat (CentraleSupélec),
Patrick Ciarlet (ENSTA Paris) et al.



7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 4-8, 2022

In Memory of Professor Robert Strichartz

We will be dediicating the entire conference to Professor Strichartz. A special session will be scheduled during the
conference for all to attend and reflect on their thoughts and memories of Bob. Bob is appreciated and recognized
for his organizing of the Fractals Conference Community in 2002. He will be profoundly missed by family, friends,
colleagues, and most of all, the students he mentored and influenced throughout his career.

A message from the Cornell Department of Mathematics Chair, Tara Holm:

Dear friends,

Tam sad to share that our colleague and friend Professor Robert Strichartz died yesterday, 19 December 2021, after a
long illness. He was 78.



UCONN ()
8th Cornell Conference on Analysis, Probability,

and Mathematical Physics on Fractals:
June 2025

Everybody is invited !



Thank you for your attention!

Picture: the Sierpinski-flower

UConn REU 2023: Fractal Eigenmaps

Bernard Akwei, Rachel Bailey, Luke Rogers et al.
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