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Multi-Frequency Schrödinger Operators

Fix a dimension d ∈ N and consider α ∈ Td := Rd/Zd that is such that the
translation Tα : Td → Td , ω 7→ ω + α is minimal.

If g : Td → R is bounded and measurable, we can consider, for each ω ∈ Td ,
the discrete Schrödinger operator

[Hα,g,ωψ](n) = ψ(n + 1) + ψ(n − 1) + g(ω + nα)ψ(n)

in `2(Z). We call such an operator a generalized quasi-periodic Schrödinger
operator.

By standard arguments involving the ergodicity of Lebesgue measure with
respect to Tα, there is a compact set Σα,g such that for Lebesgue almost every
ω ∈ Td , the spectrum of Hα,g,ω is equal to Σα,g .

Definition
A function g : Td → R is called elementary if it is measurable and takes finitely
many values. The set of elementary functions g : Td → R is denoted by E(Td).
A subset of E(Td) is called ample if its ‖ · ‖∞-closure in L∞(Td) contains
C(Td).



Zero Measure Cantor Spectrum

Theorem (Chaika-D.-Fillman-Gohlke)

Let d = 2. Then, for Lebesgue almost every α ∈ Td , the set

Zα = {g ∈ E(Td) : Σα,g is a Cantor set of zero Lebesgue measure}

is ample.

Remark
(a) In the case d = 1, this is a 2006 result of D.-Lenz, and the full measure set
of α ∈ T is explicit: T \Q. For d = 2, the full measure set is not explicit.

(b) The fact that the result can be extended to a value of d that is greater
than one is not obvious, and indeed surprising, since the straightforward
extension of the proof for d = 1 is known to fail.

(c) To the best of our knowledge, there is no known example of a quasi-periodic
multi-frequency potential (i.e., d > 1 and g ∈ C(Td)) so that the associated
Schrödinger operator has zero-measure spectrum. It is unclear whether such an
example exists. The fact that arbitrarily small ‖ · ‖∞ perturbations of an
arbitrary g ∈ C(Td) can produce this effect is therefore interesting.



Zero-Measure Spectrum via the Boshernitzan Criterion

Definition
Given a finite set A, called the alphabet, give the full shift AZ the product
topology inherited from placing the discrete topology on each factor, and define
the shift map

S : AZ → AZ, [Sx ](n) = x(n + 1)

A subshift over A is a closed (hence compact) S-invariant subset X ⊆ AZ. The
language of a subshift X is

L(X ) := {xn . . . xn+k−1 : x ∈ X , n ∈ Z, k ∈ N}

A subshift X is minimal if each of its S-orbits is dense.

Definition
Let (X ,S) be a minimal subshift. We say that (X , S) satisfies the Boshernitzan
criterion if there exist an S-invariant probability measure µ, a constant C > 0,
and a sequence n1, n2, . . .→∞ so that for all w = w1 · · ·wni ∈ L(X ),

µ({x ∈ X : x1 · · · xni = w}) > C

ni



Zero-Measure Spectrum via the Boshernitzan Criterion

Given a finite alphabet A and a subshift X ⊆ AZ, one can define Schrödinger
operators in `2(Z) by generating potentials which are obtained through
real-valued sampling along the S-orbits of X . That is, if f : X → R is given, we
associate with each x ∈ X the potential Vx : Z→ R given by

Vx(n) = f (Snx), n ∈ Z

The Schrödinger operator Hx in `2(Z) is then given by

[Hxψ](n) = ψ(n + 1) + ψ(n − 1) + Vx(n)ψ(n)

One typically restricts attention to locally constant functions f , that is,
functions that depend on only finitely many entries of the input sequence x .
If X is minimal and f is locally constant, then a simple strong approximation
argument shows that there is a compact set ΣX ,f ⊂ R such that

σ(Hx) = ΣX ,f for every x ∈ X

Theorem (D.-Lenz)

If the minimal subshift X satisfies the Boshernitzan criterion and f is locally
constant, then either all Vx are periodic or the set ΣX ,f is a Cantor set of zero
Lebesgue measure.



The Tribonacci Substitution and the Classical Rauzy Fractal

With the alphabet A3 = {1, 2, 3}, consider the Tribonacci substitution

ST : A3 → A∗3 , 1 7→ 12, 2 7→ 13, 3 7→ 1

Iteration on 1 yields the Tribonacci sequence uT = 12131211213121213 . . ..
The classical Rauzy fractal is constructed as follows:

I Consider R3 = {(x , y , z) : x , y , z ∈ R} and associate x ↔ 1, y ↔ 2,
z ↔ 3.

I Scan uT from left to right and build a “staircase” by starting at (0, 0, 0)
and increasing that component by one which corresponds to the symbol
currently being scanned.

I Since uT = 12131211213121213 . . ., the sequence of points so generated
begins with (1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 1, 1), (3, 1, 1), (3, 2, 1), (4, 2, 1),
etc.

I Note that these points cluster along a line LT . Project the points in the
direction of this line to the orthogonal complement PT of LT .

I The closure of the image in the plane PT is the classical Rauzy fractal. If
we color the points corresponding to the three different symbols in three
different colors, the Rauzy fractal partitions into three subsets, which
happen to be similar to itself. This is a manifestation of the self-similarity
of the Tribonacci sequence: ST (uT ) = uT .



The Tribonacci Substitution and the Classical Rauzy Fractal
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The construction of the classical Rauzy fractal
(Source: Wikipedia)



The Tribonacci Substitution and the Classical Rauzy Fractal

The classical Rauzy fractal
(Source: Milton Minervino)



The Tribonacci Substitution and the Classical Rauzy Fractal

THE PISOT CONJECTURE 3

on Kc
β
∼= Rn−1 by |β′| < 1 for all β′ Galois conjugates of β. This remarkable

dynamical property of Pisot numbers will be crucial: the contracting space Kc
β

will be suitable to represent geometrically the substitution dynamical system
by a fractal attractor generated by a graph directed iterated function system
with contraction factors given by the Galois conjugates of β. Good references on
fractal geometry are [Fal03, Bar88].

Origins of the geometric interpretation. The geometric theory for the
study of substitution dynamical systems was initiated by Gérard Rauzy in his
seminal work [Rau82]. He succeeded to prove that the substitution dynamical
system (Xσ, S) generated by the Tribonacci substitution σ : 1 �→ 12, 2 �→ 13, 3 �→ 1
is a translation on a two-dimensional torus. The key point was to interpret the
shift as a domain exchange on a fractal domain, later called Rauzy fractal in
his honour, decomposable in three subpieces, or subtiles, which give a suitable
partition for the domain exchange to be coded by (Xσ, S). Another essential
point is that Rauzy showed also that the fractal domain obtained with this
construction can tile periodically the plane where it is represented. Therefore
this domain can be seen as a two-dimensional torus and the domain exchange as
a translation on this torus.

Figure 1. Domain exchange and periodic tiling for the Rauzy
fractal associated with the Tribonacci substitution.

Rauzy’s original idea was to use a special kind of numeration with admissibility
governed by a graph associated with the substitution to obtain the fractal domain
as geometrical representation of the substitutive system. We will see in Chapter 1
how substitutions and numeration are intimately related.

Beta-numeration is a particular case of the substitutive one and there is
an extensive and independent study focused on it. The investigation of tilings
generated by beta-numeration began with the groundwork of Thurston [Thu89]

Periodic tiling of the plane by copies of the Rauzy fractal
(Source: Milton Minervino)



S-Adic Systems and Subshifts

An S-adic system over A is defined by a choice of a directive sequence
τ = (τn)∞n=0 of substitutions on A.

For 0 ≤ m < n, we consider compositions of the form τ[m,n] = τm · · · τn. For
a ∈ A, we write wn(a) = τ[0,n](a), and for the substitution matrices, we write
MI = MτI for an interval I . Clearly, for I = [m, n], one has

M[m,n] = MτmMτm+1 · · ·Mτn

The language associated to τ is

L(τ ) := {w ∈ A∗ : w / wn(a) for some a ∈ A and n ∈ N0}

It is easy to check that

X = X (τ ) := {x ∈ AZ : L(x) ⊆ L(τ )}

is a non-empty subshift, provided that

lim
n→∞

max
a∈A
|wn(a)| =∞

In this case, we call X (τ ) the S-adic subshift generated by τ .



The Cassaigne-Selmer Algorithm

Denote R+ = [0,∞) and let

∆ = ∆3 = {(x1, x2, x3) ∈ R3
+ : x1 + x2 + x3 = 1}

The Cassaigne-Selmer algorithm is given by

T : ∆→ ∆, (x1, x2, x3) 7→

( x1−x3
x1+x2

, x3
x1+x2

, x2
x1+x2

) if x1 ≥ x3

( x2
x2+x3

, x1
x2+x3

, x3−x1
x2+x3

) if x3 > x1

There is an ergodic T -invariant probability measure ν on ∆ which is equivalent
to Lebesgue measure.

The Cassaigne-Selmer algorithm is of the form

T : ∆→ ∆, x 7→ A(x)−1x

‖A(x)−1x‖1

for some locally constant matrix valued function A : ∆→ GL(3,Z).



The Associated S-Adic Subshift

We select for each x ∈ ∆ a substitution ϕ(x) on the alphabet A3 = {1, 2, 3}
such that A(x) coincides with the substitution matrix Mϕ(x):

ϕ(x) =

{
γ1 if x1 ≥ x3

γ2 if x3 > x1

with the Cassaigne-Selmer substitutions

γ1 :


1 7→ 1

2 7→ 13

3 7→ 2

γ2 :


1 7→ 2

2 7→ 13

3 7→ 3

The orbit of a point x ∈ ∆ under the action of T defines an S-adic system,
called a substitutive realization of (∆,T ,A), given by the directive sequence

φ(x) = (ϕ(T nx))∞n=0

The corresponding subshift is given by (X (φ(x)), S).

On the other hand, we relate to each point x in the 3-dimensional simplex ∆ a
point on the torus T2 by the map π : ∆→ T2, which denotes the projection to
the first 2 coordinates.



Natural Codings of Torus Translations

Definition
A collection F = {F1, . . . ,Fh} is called a natural measurable partition of T2 if

I
⋃h

i=1 Fi = T2

I Fj ∩ Fk has zero measure for each j 6= k

I each Fi is measurable with dense interior and zero measure boundary

Given a torus translation Tα : T2 → T2, ω 7→ ω + α, the language associated
with F, denoted L(F), is the set of finite words w = w0 · · ·wn ∈ {1, . . . , h}∗
such that

⋂n
k=0 T

−k
α F̊wk 6= ∅, where Å denotes the interior of A.

Definition
A subshift (X ,S) is called a natural coding of (T2,Tα) if its language coincides
with the language of a natural measurable partition {F1, . . . ,Fh} and

⋂
n∈N

n⋂
k=0

T−k
α F̊xk

consists of a single point for every x = (xn)n∈Z ∈ X .

Theorem (Berthé-Steiner-Thuswaldner, Fogg-Noûs)

Let φ be the substitutive realization of the Cassaigne-Selmer algorithm. For
ν-almost every x ∈ ∆, the subshift (X (φ(x)),S) is a natural coding of
(T2,Tπ(x)).



S-Adic Subshifts Satisfying the Boshernitzan Criterion

Let φ = (ϕk)∞k=0 be a directive sequence generating an S-adic system,
(X (φ), S).

Definition
For a, b ∈ A, we say that a precedes b at level n if there are m ∈ N and c ∈ A
such that ab / ϕ[n+1,n+m](c). For an interval I = [n + 1, n + `], we say ϕI is a
word builder at level n if, whenever a precedes b at level n, there is c ∈ A such
that ab / ϕI (c).

Theorem (Chaika-D.-Fillman-Gohlke)

Suppose there exists a constant N > 0 so that, for infinitely many n0, there
exist n0 < n1 < n2 < n3 so that

I M[n0+1,n1] and M[n2+1,n3] are positive matrices

I ϕ[n1+1,n2] is a word builder at level n1

I max{‖M[n0+1,n1]‖, ‖M[n1+1,n2]‖, ‖M[n2+1,n3]‖} ≤ N

Then (X (φ), S) satisfies Boshernitzan’s criterion.



Boshernitzan’s Criterion for Codings of Translations

Theorem (Chaika-D.-Fillman-Gohlke)

For Lebesgue almost every α ∈ T2
∆, the subshift (X (φ(π−1(α))), S) satisfies

Boshernitzan’s criterion. In particular, for almost every α ∈ T2, the toral
translation (T2,Tα) admits a natural coding that satisfies Boshernitzan’s
criterion.

Sketch of Proof. The main steps are the following:

I when running the Cassaigne-Selmer algorithm T , identify a local situation
in ∆ that generates a word builder over a finite stretch of the iteration

I show that this local situation has positive measure with respect to ν

I use the Birkhoff ergodic theorem to show that almost every trajectory
enters the local situation infinitely often

I conclude that for almost every point, there are are infinitely many word
builders

One can then deduce that the subshift (X (φ(x)), S) satisfies the sufficient
condition for the Boshernitzan criterion from the previous slide for ν-almost
every x ∈ ∆.



Deriving the Main Result

Proof that zero-measure Cantor spectrum is ample in E(T2). Assume that
(X , S) is a natural coding of Tα : T2 → T2 associated with the natural
measurable partition {F1, . . . ,Fh}.

Given w = w0 · · ·wn ∈ L(X ), let

Fw =
n⋂

k=0

T−k
α Fwk

which is nonempty by the definition of L(X ). Let χw denote the characteristic
function of Fw , and let A denote the algebra generated by {χw : w ∈ L(X )}.

It can then be seen that A is ample as any f ∈ C(Td) is uniformly continuous
and diam(Fw ) can be made as small as desired by taking |w | sufficiently large.

In particular, A \ {constants} is then ample as well.

Now conclude by taking the full measure sets of α’s in T2 that generate a
translation Tα : T2 → T2 that is minimal and admits a natural coding that
satisfies the Boshernitzan criterion.
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